Skip to main content
Log in

Assessment of Heavy Metals Concentrations in Soil Samples from the Vicinity of Busy Roads: Influence on Drosophila melanogaster Life Cycle

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An assessment of Cd, Cu, Pb, and Zn in 25 soil samples collected near busy roads in Irbid city, Jordan indicated contamination of these soil samples with different concentrations of 624, 1.243, 242, and 847 µg/g for Pb, Cd, Cu, and Zn, respectively. The survival percentage of Drosophila melanogaster third-instar larvae on synthetic medium containing these concentrations for the first generation shows a significant reduction in their growth and development or metamorphosis for most soil extracts. Moreover, there was a significant reduction in survival growth and development in the second generation. The survival percentages of the second generation at pupa stage was higher than the first generation, whereas at the adult stage, there was a lower survival percentage indicating some effects on metamorphosis caused by concentration of heavy metals on Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferguson J (1990) The heavy metal elements in the atmosphere. In: Ferguson JE (ed) Chemistry, Environmental Impact and Health Effects. Pergamon Press, UK

    Google Scholar 

  2. Largewerff J, Spetch A (1970) Contamination of roadside soil and vegetation in cadmium, nickel and zinc. Environ Sci Technol 4:583–586

    Article  Google Scholar 

  3. Campos E, Barahona E, Lachica M, Mingorance M (1998) A study of the analytical parameters important for the sequential extraction procedure using microwave heating for Pb, Zn, and Cu in calcareous soils. Anal Chim Acta 369:235–243

    Article  CAS  Google Scholar 

  4. Cameron R (1992) Guide to site and soil description of hazardous waste site characterization. Volume 1, Metals. Environmental Protection Agency EPA/600/4–91/029

  5. World Health Organization, Inorganic Lead (1995) Environmental Health Criteria 165. International Programme on Chemical Safety. WHO, Geneva, Switzerland

    Google Scholar 

  6. Hapke H (1987) Thxikologie fur veterinarmedizine, 2nd edition. Enke-Verlag, Stuttgart

    Google Scholar 

  7. Underwood E (1977) Trace Elements in human and animal nutrition, 4th ed. Academic Press, Inc., New York

    Google Scholar 

  8. Gossel T, Bricker J (1990) Principles of clinical toxicology, 2nd edition. Ravan Press, New York, pp 135–195

    Google Scholar 

  9. Setwart W, Schwartz B, Simon D, Bolla K, Todd A, Links J (1999) Neurobehavioral function and tibial and chelatable lead levels in 543 former organolead workers. Neurology 52:1610–1617

    Google Scholar 

  10. Silar P, Theodore L, Mokdad R, Erraiss N, Cadic A, Wegnez M (1990) Metallothionein Mto gene of Drosophila melanogaster: structure and regulation. J Mol Biol 215:217–224

    Article  PubMed  CAS  Google Scholar 

  11. Echalier G (1997) Drosophila cells in culture. Academic Press, New York

    Google Scholar 

  12. De moor J, Koropatinickm D (2000) Metals and cellular signaling in mammalian cells. Cell Mol Biol 46:367–381

    Google Scholar 

  13. Kagi J, Kojima Y (1987) Chemistry and biochemistry of metallothionein. Experientia Suppl 52:25–61

    PubMed  CAS  Google Scholar 

  14. Kagi J (1987) Overview of metallothionein methods. Enzymologia 205:613–626

    Article  Google Scholar 

  15. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Scchaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal induced metallothionein gene expression. EMBO J 13:2870−2875

    PubMed  CAS  Google Scholar 

  16. Hensbergen P, Donker M, Hunziker P, Van der Schors R, Van Straalen N (2001) Two metals-binding peptides from the insect Orcheslla cincta (collembola) as a result of metallothionein cleavage. Insect Biochem Mol Biol 31:1105–1114

    Article  PubMed  CAS  Google Scholar 

  17. Bonneton F, Wegnez M (1995) Developmental variability of metallothionein Mtngene expression in the species of the Drosophila melanogaster subgroup. Dev Genet 16:253–263

    Article  PubMed  CAS  Google Scholar 

  18. Bonneton F, Theodore L, Silar P, Maroni G, Wegnez M (1996) Response of Drosophila metallothothionein promoters to metallic heat shock and oxidative stresses. FEBS Lett 380:33–38

    Article  PubMed  CAS  Google Scholar 

  19. Durliat M, Bonneton F, Boissonneau E, Andre MM, Wegnez M (1995) Expression of metallothionein genes during the post-embryonic development of Drosophila melanogaster. BioMetals 8:339–351

    Article  PubMed  CAS  Google Scholar 

  20. Lastowski-Perry D, Otto E, Maroni G (1985) Molecular and cytogenetic characterization of a metallothionein. J Biol Chem 260:1572–1530

    Google Scholar 

  21. Maroni G, Otto E, Lastowski-Perry D (1986) Molecular and cytogenetic characterization of a metallothionein. Genetics 112:493–504

    PubMed  CAS  Google Scholar 

  22. Mokdad R, Debec A, Wegnez M (1987) Metallothionein genes in Drosophila melanogaster constitute a dual system. Proc Natl Acad Sci U S A 84:2658–2662

    Article  PubMed  CAS  Google Scholar 

  23. Mirth C, Riddiford L (2007) Size assessment and growth control: how adult size is determined in insects. Bioassays 29(4):344–355

    Article  CAS  Google Scholar 

  24. Gefen E, Marlon A, Gibbs A (2006) Selection for desiccation resistance in adult Drosophila melanogaster affects larval development and metabolite accumulation. J Exp Biol 209(17):3293–3300

    Article  PubMed  Google Scholar 

  25. Massadeh A, Snook R (2001) Determination of Pb and Cd in road dusts. J Environ Monit 4:567–572

    Article  CAS  Google Scholar 

  26. Ballan-Dufrancacis C (2002) Localization of Metals in Cells of Pterygote insects. Microsc Res. Tech 56:403–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Jordan University of Science and Technology, Irbid-Jordan for introducing facilities. Many thanks also to Hokmia Al-Khateeb, Ibrahim Dukhnoosh, and Hazem Haddad for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Massadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massadeh, A., Al-Momani, F. & Elbetieha, A. Assessment of Heavy Metals Concentrations in Soil Samples from the Vicinity of Busy Roads: Influence on Drosophila melanogaster Life Cycle. Biol Trace Elem Res 122, 292–299 (2008). https://doi.org/10.1007/s12011-007-8080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8080-9

Keywords

Navigation