Skip to main content
Log in

Normolipidemic Effect of Antioxidants in Low Cholesterol-Modified Poultry EggΨ on Zn-induced Dyslipidemia and Liver Pathology in Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A low cholesterol (CH)-modified poultry egg (MEΨ) containing more vitamin E, lenolenic acid, and minerals Cu and Mg but low total lipid (TL) and Zn contents than the conventional egg evaluated to reduce the severity of dyslipidemia induced by excessive Zn in the diet. The experimental data was recorded on male rats fed on normolipidemic (NL) semi-synthetic basal diet containing 20 mg Zn/kg diet in control group I, Zn supplemented dyslipidemic diet-A (Zn-DL-A) and B (Zn-DL-B) containing 40 and 80 mg Zn/kg diet in groups II and III, and MEΨ-mixed Test diet-A (Zn-DL-A + 4 MEΨ) and Test diet-B (Zn-DL-B + 4 MEΨ) in groups IIEM and IIIEM, respectively, for 180 and 90 days. Data recorded on liver and blood lipid profiles showed reduction in the concentration of TL, CH, triglycerides, and glycogen (GG) in liver consequently leading to their rise in blood serum including rise in VLDL-c and LDL-c but fall in HDL-c in groups II and III rats that reversed after MEΨ treatment resulting in rise of their levels in the liver and fall in the blood of groups IIEM and IIIEM rats, respectively. Mineral status in the liver showed a rise in Zn but fall in Cu and Mg levels in groups II and III that was reversed after MEΨ treatment resulting in fall in Zn and rise in Cu and Mg concentration in the liver of groups IIEM and IIIEM rats. Hepatopathogical studies showed reduction in the dilatation of long citernal profile of endoplasmic reticulum and increase in GG and TL granules in the cytoplasm of hepatocytes of groups IIEM and IIIEM after MEΨ treatment than those of groups II and III rats. It was concluded that the inclusion of MEΨ would be helpful in reducing dyslipidemia by correcting the ionic imbalance generated by excessive Zn intake in rats or by drugs, even in chronic diseased conditions without aggravating risk factors for heart diseases in humans that need further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Cholesterol Education Program (1991) Report of the Expert Panel on Population Strategies for Blood Cholesterol Reduction: executive summary. Arch Intern Med 151:1071–1084

    Article  Google Scholar 

  2. Kritchevsky SB, Kritchevsky D (2000) Egg consumption and coronary heart disease: an epidemiologic overview. J Am Coll Nutr 19:549S–555S

    PubMed  CAS  Google Scholar 

  3. Hu FB, Stampfer MJ, Rimm EB, Manson JE, Ascherio A, Colditz GA, Rosner BA, Spiegelman D, Speizer FE, Sacks FM, Hennekens CH, Willett WC (1999) A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA 281:1387–1394

    Article  PubMed  CAS  Google Scholar 

  4. Rimm EB, Stampfer MJ (2000) Antioxidants for vascular diseases. Med Clin North Am 84:239–249

    Article  PubMed  CAS  Google Scholar 

  5. Giovannucci E, Stampfer MJ, Colditz GA, Hunter DJ, Fuchs C, Rosner BA, Speitzer FE, Wilett WC (1998) Multivitamin use, folate, and colon cancer in women in the Nurse’s Health Study. Ann Intern Med 129:517–524

    PubMed  CAS  Google Scholar 

  6. Pelletier X, Thouvenot P, Belbraouet S, Chavvialle JA, Hanesse B, Mayeux D, Debry G (1996) Effect of egg consumption in healthy volunteers: influence and on glycemic and hormonal responses. Ann Nutr Metab 40:109–115

    Article  PubMed  CAS  Google Scholar 

  7. Herron KL, Fernandez ML (2004) Are the current dietary guidelines regarding egg consumption appropriate. J Nutr 134:187–190

    PubMed  CAS  Google Scholar 

  8. Song WO, Kerver JM (2000) Nutritional contribution of eggs to American diets. J Am Coll Nutr 19:556S–562S

    PubMed  CAS  Google Scholar 

  9. Corti MC, Gurlanik JM, Bilato C (1996) Coronary heart risk factors in older persons. Aging (Milano) 2:75–89

    Google Scholar 

  10. Krauss RM, Ecket RH, Howard B, Appel LJ, Daniels SR, Deckelbaum RJ, Edrman JW, Kri-Etherton P, Goldberg IJ, Kotchen TA, Lichtenstein AH, Mitch WE, Mullis R, Robinson K, Wylie-Roset J, St Jeor S, Suttie J, Tribble DL, Bazzarre TL (2000) AHA Dietary Guidelines. Revision 2000: a statement for healthcare professionals from the nutrition committee of the American Heart Association. Stroke 31:27151–27166

    Google Scholar 

  11. Hegsted DM, McGandy RB, Myers ML, Stare FJ (1965) Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17:281–295

    PubMed  CAS  Google Scholar 

  12. Klevay LM (1975) The effect of zinc to copper on cholesterol metabolism. Am J Clin Nutr 28:764–774

    PubMed  CAS  Google Scholar 

  13. Nebia C, Ferrero E, Valenza F, Castagnaro M, Re G, Gennaro SM (1991) Pathologic changes, tissue distribution, and extent of conversion to ethlenthiourea alter sub-acute administration of zinc ethylene-bis-dithiocabamete (zineb) to calves with immature rumen function. Am J Vet Res 52:1717–1722

    Google Scholar 

  14. Bay BH, Tan BK, Sit KH, Hsu A (1996) Cytochorome P450 content and ultrastructural changes in liver of zinc treated C57/6J mice. Pharmacol Res 34:93–97

    Article  PubMed  CAS  Google Scholar 

  15. Folch JLM, Less M, Solane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  16. Chiamori N, Henry RJ (1959) Study of ferric chloride method for the determination of total cholesterol and cholesterol ester. Am J Clin Pathol 31:305–309

    PubMed  CAS  Google Scholar 

  17. Gottfried SP, Rosenberg B (1973) Improved manual spectrophotometric procedure for determination of serum triglycerides. Clin Chem 19:1077–1078

    PubMed  CAS  Google Scholar 

  18. Frings CS, Dunn RT (1970) A colorimetric method for determination of total lipids based on sulpha-phosphovanillin reaction. Am J Clin Pathol 53:89–91

    PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebroght NJ, Farr AL, Randall RL (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Heatley NG (1935) The distribution of glycogen in the regions of amphibian gastrula: with a method for the microdetermination of glycogen. Biochem J 29:2568–2572

    PubMed  CAS  Google Scholar 

  21. Taylor SL, Lamden MP, Tappel AL (1976) Sensitive fluorimetric method for tissue tocopherol analysis. Lipids 11:530–538

    Article  PubMed  CAS  Google Scholar 

  22. Barker D, Fitzpatrick MP, Dierenfield ES (1998) Nutrient composition of selected whole invertebrates. Zoo Biol 17:123–134

    Article  CAS  Google Scholar 

  23. Bindal MP, Wadhwa BK (1997) Detection of adulteration in ghee with vegetable oils using GLC based on a marker fatty acid. Indian J Dairy Sci 50:129–133

    Google Scholar 

  24. Orgebin-crist MC, Freeman M, Barney GH (1971) Sperm formation in Zn-deficient rats. Ann Biol Anim Biochem Biophys 11:547–558

    Article  CAS  Google Scholar 

  25. Seifter S, Dayton S, Movic B, Mtwyler E (1950) The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191

    PubMed  CAS  Google Scholar 

  26. Allen DK, Klevay LM (1978) Cholesterolemia and cardiovascular abnormalities in rats caused by copper deficiency. Atherosclerosis 28:81–93

    Article  Google Scholar 

  27. Umeron J (1989) Serum cholesterol and HDL-cholesterol levels as associated with copper and zinc intake in physically active and sedentary elderly men and women. Adv Exp Med Biol 258:171–181

    Google Scholar 

  28. Gueux E, Rayssiguier Y, Piot MC, Alcindor L (1984) The reduction of plasma lecithin-cholesterol-acyltransferase activity by magnesium deficiency in the rat. J Nutr 114:1479–1483

    PubMed  CAS  Google Scholar 

  29. Harvey PW, Allen KGD (1981) Decreased plasma lecithin-cholesterol acyltransferase activity in copper deficient rats. J Nutr 111:1855–1858

    PubMed  CAS  Google Scholar 

  30. Yount NY, McVamara DJ, Al-othmann AA, Lei KY (1990) The effect of copper deficiency on rat hepatic 3-hydroxy-3-Methylglutaryl-CoA reductase activity. J Nutr Biochem 1:21–27

    Article  PubMed  CAS  Google Scholar 

  31. Al-Othman AA, Rosenstein F, Leik Y (1992) Copper deficiency alters plasma pool size, percent composition and concentration of lipoprotein components in rats. J Nutr 122:1199–1204

    PubMed  CAS  Google Scholar 

  32. Rock E, Astier C, Lab C, Vignon X, Gueux E, Mott C, Rayssiguier Y (1995) Dietary magnesium deficiency in rats enhances free radical production in skeletal muscle. J Nutr 125:1205–1210

    PubMed  CAS  Google Scholar 

  33. Balevska PS, Rosanna EM, Kassabova TA (1981) Studies on lipid peroxidation in rat liver by copper deficiency. Int J Biochem 13:489–493

    Article  PubMed  CAS  Google Scholar 

  34. Paynter DI, Moir RJ, Underwood EJ (1979) Changes in the activity of the Cu-Zn superoxide dismutase enzyme in tissues of the rat with changes in dietary copper. J Nutr 109:1570–1577

    PubMed  CAS  Google Scholar 

  35. Taylor CG, Bettger WJ, Bray TM (1988) Effect of dietary zinc or copper deficiency on the primary free radical generation system in rats. J Nutr 118:613–621

    PubMed  CAS  Google Scholar 

  36. Patterson WP, Winkelmann M, Perry MC (1985) Zinc-induced copper deficiency: mega-mineral sideroblastic anemia. Ann Intern Med 103:385–386

    PubMed  CAS  Google Scholar 

  37. Lin WH, Chen MD, Wang CC, Lin PY (1995) Dietary copper supplementation increases the catecholamine levels in genetically obese (ob/ob) mice. Biol Trace Elem Res 50:243–247

    Article  PubMed  CAS  Google Scholar 

  38. Rasmussen HS, Aurup P, Goldstein K, McNair P, Mortensen PB, Larsen OG, Lawaelz H (1989) Influence of magnesium substitution therapy on blood lipid composition in patients with ischemic heart disease. Arch Intern Med 149:1050–1053

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton IMJ, Gilmore WS, Strain JJ (2000) Marginal copper deficiency and atherosclerosis. Biol Trace Elem Res 78:179–189

    Article  PubMed  CAS  Google Scholar 

  40. Mahley RW, Imnerarity TL (1983) Lipoprotein receptors and cholesterol homeostasis. Biochem Biophys Acta 737:197–222

    PubMed  CAS  Google Scholar 

  41. Paolisso G, Tagliamonte MR, Barbieri M, Zito GA, Gambardella A, Varricchio G, Ragno E, Varricchio M (2000) Chronic vitamin E administration improves bronchial reactivity and increases intracellular magnesium concentration in type-2 diabetic patients. J Clin Endocrinol Metabo 85:109–115

    Article  CAS  Google Scholar 

  42. Schmidt EB, Skou HA, Christensen JH, Dyerberg J (2003) n-3 fatty acid from fish and coronary artery disease: implications for public health. Public Health Nutr 3:91–108

    Google Scholar 

  43. Rimm EB, Stampfer MJ, Giovannucci E, Ascherio A, Spiegelman D, Colditz GA, Willett WC (1995) Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol 141:1117–1127

    PubMed  CAS  Google Scholar 

  44. Taneja SK, Mahajan M, Arya P (1996) Excess bioavailability of zinc may cause obesity in humans. Experientia 52:31–33

    Article  PubMed  CAS  Google Scholar 

  45. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary Herat disease in women. N Engl J Med 337:1491–1499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. T. Gill for laboratory facilities, Jaya Health Care poultry farm (Panchkula, Haryana, India) to rearing the birds and All India Institute of Medical Sciences (New Delhi, India) for TEM studies. Financial aid provided by the UGC (UGC SAP Phase-III) to the Zoology Department and research fellowship to R. Mandal provided by the Panjab University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar Taneja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taneja, S.K., Mandal, R. Normolipidemic Effect of Antioxidants in Low Cholesterol-Modified Poultry EggΨ on Zn-induced Dyslipidemia and Liver Pathology in Wistar Rats. Biol Trace Elem Res 122, 256–265 (2008). https://doi.org/10.1007/s12011-007-8076-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8076-5

Keywords

Navigation