Skip to main content
Log in

Isotope Ratio Measurements of Iron in Blood Samples by Multi-collector ICP-MS to Support Nutritional Investigations in Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

With the perspective of embarking on a human study using a double iron (Fe) stable isotope tracer protocol to assess iron bioavailability, investigations were conducted on Fe isotope ratios in blood samples using a VG Axiom Multi-collector ICP-MS. The factors affecting the precision and accuracy of Fe isotopic ratios, such as spectral- and matrix-induced interferences and Fe recoveries from sample preparation, have been identified and optimized. Major polyatomic interferences (e.g., Ar-O, Ar-OH, and FeH) were significantly reduced by using an Aridus nebulizer and desolvating system. Isobaric metal (e.g., 54Cr+ on 54Fe+ and 58Ni+ on 58Fe+) interferences and Ca-oxides and hydroxides were quantitatively removed during chemical purification of blood samples and selective isolation of Fe by anion-exchange resin, after mineralization of the blood samples by microwave digestion. Quantitative recoveries of Fe from different steps of sample preparation were verified using whole blood reference material. Fe isotopic compositions of the samples were corrected for instrumental mass bias by the standard-sample bracketing method using the certified reference standard IRMM-014. External precisions on the order of 0.008–0.05 (% RSD), 0.007–0.015 (% RSD), and 0.03–0.09 (% RSD) were obtained for 54Fe/56Fe, 57Fe/56Fe, and 58Fe/56Fe, respectively, in the blood for three replicate measurements. The level of precision obtained in this work enables the detection of low enrichments of Fe in blood, which is highly desired in nutrition tracer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker JS (2002) State-of-the art and progress in precise and accurate isotope ratio measurements by ICP-MS and LA-ICP-MS. J Anal At Spectrom 17:1172–1185

    Article  CAS  Google Scholar 

  2. Bsecker JS, Dietze H-J (2000) Precise and accurate isotope ratio measurements by ICP-MS. Fresenius J Anal Chem 368:23–30

    Article  Google Scholar 

  3. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Technol 16:555–567

    CAS  Google Scholar 

  4. Boulyga SF, Becker JS (2002) Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples. J Anal At Spectrom 17:1143–1147

    Article  CAS  Google Scholar 

  5. Griffin IJ (2002) Using stable isotopes and isotope ratio mass spectrometry to study mineral metabolism in humans. J Anal At Spectrom 17:1186–1193

    Article  CAS  Google Scholar 

  6. Stürup S (2004) The use of ICPMS for stable isotope tracer studies in humans: a review. Anal Bioanal Chem 378:273–282

    Article  PubMed  Google Scholar 

  7. Lowe N, Jackson M (2000) Advances in isotope methods for the analysis of trace elements in man CRC series in Modern Nutrition ed

  8. Jitaru P, Goenaga Infante H, Adams F (2006) Simultaneous multi-elemental speciation analysis of organometallic compounds by solid phase microextraction and multi-capillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. J Anal At Spectrom 19:867–875

    Article  Google Scholar 

  9. Goenaga Infante H, Van Campenhout K, Blust R, Adams F (2002) Inductively coupled plasma mass spectrometry coupled to high-performance liquid chromatography for multi-elemental speciation analysis of metaloproteins in carp cytosol. J Anal At Spectrom 17:79–87

    Article  CAS  Google Scholar 

  10. Benkhedda K, Goenaga Infante H, Ivanova E, Adams F (2001) Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactor. J Anal At Spectrom 16:995–1001

    Article  CAS  Google Scholar 

  11. Moens L (1997) Applications of mass spectrometry in the trace element analysis of biological materials. Fresenius J Anal Chem 359:309–316

    Article  CAS  Google Scholar 

  12. Vanhaecke F, Moens L (2004) Overcoming spectral overlap in isotopic analysis via single and multi-collector ICP-mass spectrometry. Anal Bioanal Chem 378:232–240

    Article  PubMed  CAS  Google Scholar 

  13. Belshaw NS, Zhu XK, Guo Y, O'Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom 197:191–195

    Article  CAS  Google Scholar 

  14. Balcaen L, De Schrijver I, Moens L, Vanhaecke F (2005) Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry. Int J Mass Spectrom 242:251–255

    Article  CAS  Google Scholar 

  15. Whittaker PG, Lind T, Williams JG (1989) Inductively coupled plasma mass spectrometric determination of the absorption of iron in normal women. Analyst 114:675–678

    Article  PubMed  CAS  Google Scholar 

  16. Whittaker PG, Lind T, Williams JG (1991) Iron absorption during normal human pregnancy: a study using stable isotopes. Br J Nutr 65:457–463

    Article  PubMed  CAS  Google Scholar 

  17. Ohno T, Shinohara A, Kohge I, Chiba M, Hirata T (2004) Isotopic analysis of Fe in human red blood cells by multiple collector-ICP-mass spectrometry. Anal Sci 20:617–621

    Article  PubMed  CAS  Google Scholar 

  18. Ting BTG, Janghorbani M (1987) Application of ICP-MS to accurate isotope analysis for human metabolic studies. Spectrochimica Acta 42B:21–27

    CAS  Google Scholar 

  19. Ting BTG, Janghorbani M (1986) Inductively coupled plasma mass spectrometry applied to isotopic analysis of iron in human fecal matter. Anal Chem 58:1334–1340

    Article  PubMed  CAS  Google Scholar 

  20. Abrams S (1999) Using stable isotopes to assess mineral absorption and utilization by children. Am J Clin Nutr 70:955–964

    PubMed  CAS  Google Scholar 

  21. Walczyk T, Davidsson L, Zavaleta N, Hurrell RF (1997) Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius J Anal Chem 359:445–449

    Article  CAS  Google Scholar 

  22. Fidler MC, Davidsson L, Zeder C, Walczyk T, Hurrell RF (2003) Iron absorption from ferrous fumarate in adult women is influenced by ascorbic acid but not by Na2EDTA. Br J Nutr 90:1081–1085

    Article  PubMed  CAS  Google Scholar 

  23. Walczyk T (2001) The potential of inorganic mass spectrometry in mineral and trace element nutrition research. Fresenius J Anal Chem 370:444–453

    Article  PubMed  CAS  Google Scholar 

  24. Vanhaecke F, Balcaen L, De Wannemacker G, Moens L (2002) Capabilities of inductively coupled plasma mass spectrometry for the measurements of Fe isotope ratios. J Anal At Spectrom 17:933–943

    Article  CAS  Google Scholar 

  25. Dauphas N, Janney PE, Mendybaev RA, Wadhwa M, Richter FM, Davis AM, Van Zuilen M, Hines R, Foley CN (2004) Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects. Anal Chem 76:5855–5863

    Article  PubMed  CAS  Google Scholar 

  26. Schoenberg R, Von Blanckenburg F (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int J Mass Spectrom 242:257–272

    Article  CAS  Google Scholar 

  27. Ingle CP, Langford N, Harvey LJ, Dainty JR, Turner PJ, Sharp BL, Lewis DJ (2004) Comparison of three different instrumental approaches to the determination of iron and zinc isotope ratios in clinical samples. J Anal At Spectrom 19:404–406

    Article  CAS  Google Scholar 

  28. Malinovsky D, Stenberg A, Rodushkin I, Andren H, Ingri J, Öhlander B, Baxter DC (2003) Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. J Anal At Spectrom 18:687–695

    Article  CAS  Google Scholar 

  29. Vogl J, Klingbeil P, Pritzkow W, Riebe G (2003) High accuracy measurements of Fe isotopes using hexapole collision cell MC-ICP-MS and isotope dilution for certification of reference materials. J Anal At Spectrom 18:1125–1132

    Article  CAS  Google Scholar 

  30. Jaris KE, Gray AL, Houk RS (1992) Inductively coupled plasma mass spectrometry, Blackie USA. Chapman and Hall, New York

    Google Scholar 

  31. Walczyk T (2004) Anal. TIMS versus multicollector-ICP-MS: coexistence or struggle for survival. Bioanal Chem 378:229–231

    Article  CAS  Google Scholar 

  32. Stenberg A, Malinovsky D, Rodushkin I, Andrén H, Pontér C, Öhlander B, Baxter DC (2003) Separation of Fe from whole blood matrix for precise isotopic ratio measurements by MC-ICP-MS: a comparison of different approaches. J Anal At Spectrom 18:23–28

    Article  CAS  Google Scholar 

  33. Krayenbuehl P-A, Walczyk T, Schoenberg R, Von Blanckenburg F, Schulthess G (2005) Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105(10):3812–3816

    Article  PubMed  CAS  Google Scholar 

  34. Beard BL, Johnson CM, Skulan JL, Nealson KH, Coxand L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117

    Article  CAS  Google Scholar 

  35. Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron isotope fractionation during oceanic crust alteration. Chem Geol 202:155–182

    Article  CAS  Google Scholar 

  36. Roe JE, Anbar AD, Barling J (2003) Nonbiological fractionation of Fe isotopes: evidence of an equilibrium isotope effect. Chem Geol 195:69–85

    Article  CAS  Google Scholar 

  37. Walczyk T, Von Blanckenburg F (2005) Deciphering the iron isotope message of the human body. Int J Mass Spectrom 242:117–134

    Article  CAS  Google Scholar 

  38. Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotope analysis of Fe by thermal ionisation mass spectrometry. Int J Mass Spectrom 193:87–99

    Article  CAS  Google Scholar 

  39. Fairweather-Tait S, Wharf SG, Eagles J, Fox R (1995) The bioavailability of iron in different weaning foods and the enhancing effect of a fruit drink containing ascorbic acid. Pediatr Res 37:389–394

    Article  PubMed  CAS  Google Scholar 

  40. Patterson KY, Veillon C (2001) Stable isotopes of minerals as metabolic tracers in human nutrition research. Exp Biol Med 226:271–282

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. T. Walczyk (ETH Zurich) and C. Zeder (ETH Zurich) for useful discussions. K. Benkhedda is the recipient of a NSERC Postdoctoral Visiting Fellowship in Canadian Government Laboratories at Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Cockell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkhedda, K., Chen, H., Dabeka, R. et al. Isotope Ratio Measurements of Iron in Blood Samples by Multi-collector ICP-MS to Support Nutritional Investigations in Humans. Biol Trace Elem Res 122, 179–192 (2008). https://doi.org/10.1007/s12011-007-8070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8070-y

Keywords

Navigation