Biological Trace Element Research

, Volume 122, Issue 1, pp 26–41 | Cite as

Liver Ischemia and Ischemia–Reperfusion Induces and Trafficks the Multi-specific Metal Transporter Atp7b to Bile Duct Canaliculi: Possible Preferential Transport of Iron into Bile

  • John A. Goss
  • Neal R. Barshes
  • Saul J. Karpen
  • Feng-Qin Gao
  • Samuel Wyllie
Article

Abstract

Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia–reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia–reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia–reperfusion. Thus, we conclude that liver ischemia and ischemia–reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

Keywords

Copper Liver ischemia Atp7b Trafficking Rats 

References

  1. 1.
    Berenshtein E, Mayer B, Goldberg C, Kitrossky N, Chevion M (1997) Patterns of mobilization of copper and iron following myocardial ischemia: possible predictive criteria for tissue injury. J Mol Cell Cardiol 29:3025–3034PubMedCrossRefGoogle Scholar
  2. 2.
    Arora AS, Gores GJ (1996) The role of metals in ischemia/reperfusion injury of the liver. Semin Liver Dis 16:31–38PubMedGoogle Scholar
  3. 3.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedGoogle Scholar
  4. 4.
    Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69PubMedCrossRefGoogle Scholar
  5. 5.
    Gollan JL, Gollan TJ (1998) Wilson disease in 1998: genetic, diagnostic and therapeutic aspects. J Hepatol 28:28–36PubMedCrossRefGoogle Scholar
  6. 6.
    Terada K, Nakako T, Yang XL, Iida M, Aiba N, Minamiya Y, Nakai M, Sakaki T, Miura N, Sugiyama T (1998) Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J Biol Chem 273:1815–1820PubMedCrossRefGoogle Scholar
  7. 7.
    Terada K, Aiba N, Yang XL, Iida M, Nakai M, Miura N, Sugiyama T (1999) Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett 448:53–56PubMedCrossRefGoogle Scholar
  8. 8.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  9. 9.
    Britton RS (1996) Metal-induced hepatotoxicity. Semin Liver Dis 16:3–12PubMedGoogle Scholar
  10. 10.
    Sokol RJ, Twedt D, McKim JM Jr, Devereaux MW, Karrer FM, Kam I, von Steigman G, Narkewicz MR, Bacon BR, Britton RS (1994) Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 107:1788–1798PubMedGoogle Scholar
  11. 11.
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337PubMedCrossRefGoogle Scholar
  12. 12.
    Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350PubMedCrossRefGoogle Scholar
  13. 13.
    Yamaguchi Y, Heiny ME, Gitlin JD (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 197:271–277PubMedCrossRefGoogle Scholar
  14. 14.
    Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808PubMedCrossRefGoogle Scholar
  15. 15.
    Schaefer M, Roelofsen H, Wolters H, Hofmann WJ, Müller M, Kuipers F, Stremmel W, Vonk RJ (1999) Localization of the Wilson's disease protein in human liver. Gastroenterology 117:1380–1385PubMedCrossRefGoogle Scholar
  16. 16.
    Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999a) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am J Physiol 276:G639–G646PubMedGoogle Scholar
  17. 17.
    Dijkstra M, In’t Veld G, van den Berg GJ, Muller M, Kuipers F, Vonk RJ (1995) Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes. J Clin Invest 95:412–416PubMedCrossRefGoogle Scholar
  18. 18.
    Dijkstra M, van den Berg GJ, Wolters H, In’t Veld G, Slooff MJ, Heymans HS, Kuipers F, Vonk RJ (1996) Adenosine triphosphate-dependent copper transport in human liver. J Hepatol 25:37–342PubMedCrossRefGoogle Scholar
  19. 19.
    Roelofsen H, Wolters H, van Luyn MJA, Miura N, Kuipers F, Vonk RJ (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782–793PubMedCrossRefGoogle Scholar
  20. 20.
    Harada M, Sakisaka S, Yoshitake M, Shakadoh S, Gondoh K, Sata M, Tanikawa K (1993) Biliary copper excretion in acutely and chronically copper-loaded rats. Hepatology 17:111–117PubMedCrossRefGoogle Scholar
  21. 21.
    Wyllie S, Seu P, Gao FQ, Goss JA (2003) Deregulation of iron homeostasis and cold-preservation injury to the rat liver stored in University of Wisconsin solution. Liver Transpl 9:401–410PubMedCrossRefGoogle Scholar
  22. 22.
    Timm F, Schulz G (1961) Histochemical demonstration of copper in the brain. Histochemie 2:332–341PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson D, Osaki S, Freiden E (1967) A micromethod for the determination of ferroxidase (ceruloplasmin) in human serums. Clin Chem 13:142–150PubMedGoogle Scholar
  24. 24.
    Wyllie S, Seu P, Gao FQ, Gros P, Goss JA (2002) Disruption of the SLC11A1 (formerly Nramp1) gene in Kuppfer cells attenuates early-phase warm ischemia–reperfusion injury in the mouse liver. J Leukoc Biol 72:885–897PubMedGoogle Scholar
  25. 25.
    Lowry O, Roseborough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. 26.
    Tsay MJ, Fatemi N, Narindrasorasak S, Forbes JR, Sarkar B (2004) Identification of the “missing domain” of the rat copper-transporting ATPase, atp7b: insight into the structural and metal binding characteristics of its N-terminal copper-binding domain. Biochim Biophys Acta 1688:78–85PubMedGoogle Scholar
  27. 27.
    DiDonato M, Narindrasorasak S, Forbes JR, Cox DW, Sarkar B (1997) Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J Biol Chem 272:33279–33282PubMedCrossRefGoogle Scholar
  28. 28.
    Lutsenko S, Petrukhin K, Cooper MJ, Gilliam CT, Kaplan JH (1997) N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J Biol Chem 272:18939–18944PubMedCrossRefGoogle Scholar
  29. 29.
    Omar R, Nomikos I, Piccorelli G et al (1989) Prevention of postischemic lipid peroxidation and liver cell injury by iron chelation. Gut 30:510–514PubMedCrossRefGoogle Scholar
  30. 30.
    Ozaki M, Fuchinoue S, Teraoka S, Ota K (1994) Mobilization of low-molecular-weight iron and peroxidative damage during ischemia and reoxygenation of the rat liver. Transplant Proc 26:918–921PubMedGoogle Scholar
  31. 31.
    Healing G, Gower J, Fuller B, Green C (1990) Intracellular iron redistribution. An important determinant of reperfusion damage to rabbit kidneys. Biochem Pharmacol 39:1239–1245PubMedCrossRefGoogle Scholar
  32. 32.
    Holt S, Gunderson M, Joyce K, Nayini NR, Eyster GF, Garitano AM, Zonia C, Krause GS, Aust SD, White BC (1986) Myocardial tissue iron delocalization and evidence for lipid peroxidation after two hours of ischemia. Ann Emerg Med 15:1155–1159PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506PubMedGoogle Scholar
  34. 34.
    Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763PubMedGoogle Scholar
  35. 35.
    Patel A, van de Poll MC, Greve JW, Buurman WA, Fearon KC, McNally SJ, Harrison EM, Ross JA, Garden OJ, Dejong CH, Wigmore SJ (2004) Early stress protein gene expression in a human model of ischemic preconditioning. Transplantation 78:1479–1487PubMedCrossRefGoogle Scholar
  36. 36.
    Li J, French B, Wu Y, Vanketesh R, Montgomery R, Bardag-Gorce F, Kitto J, French SW (2004) Liver hypoxia and lack of recovery after reperfusion at high blood alcohol levels in the intragastric feeding model of alcohol liver disease. Exp Mol Pathol 77:184–192PubMedCrossRefGoogle Scholar
  37. 37.
    Tacchini L, Radice L, Bernelli-Zazzera A (1999) Differential activation of some transcription factors during rat liver ischemia, reperfusion, and heat shock. J Cell Physiol 180:255–262PubMedCrossRefGoogle Scholar
  38. 38.
    Lang KJD, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1a mRNA contains and internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801PubMedCrossRefGoogle Scholar
  39. 39.
    Chevion M, Jiang Y, Har-Et R, Berenshtein E, Uretzky G, Kitrossky N (1993) Copper and iron are mobilized following myocardial ischemia: possible criteria for tissue injury. Proc Natl Acad Sci U S A 90:1102–1106PubMedCrossRefGoogle Scholar
  40. 40.
    Sergent O, Tomasi A, Ceccarelli D, Masini A, Nohl H, Cillard P, Cilliard J, Vladimirov YA, Kozlov AV (2005) Combination of iron overload plus ethanol and ischemia alone give rise to the same endogenous free iron pool. BioMetals 18:567–575PubMedCrossRefGoogle Scholar
  41. 41.
    Hou ZJ, Narindrasorasak S, Bhushan B, Sarkar B, Mitra B (2001) Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/ZN(II)/Cd(II)-ATPase from Escherichia coli. J Biol Chem 276:40858–40863PubMedCrossRefGoogle Scholar
  42. 42.
    Hassan L, Bueno P, Ferron-Celma I et al (2005) Time course of antioxidant enzymes activities in liver transplant recipients. Transpl Proc 37:3932–3935CrossRefGoogle Scholar
  43. 43.
    Yuan GJ, Ma JC, Gong ZJ et al (2005) Modulation of liver oxidant-antioxidant system by ischemic preconditioning during ischemia/reperfusion injury in rats. World J Gastroenterol 11:1825–1828PubMedGoogle Scholar
  44. 44.
    Murphy BJ, Andrews GK, Bittel D et al (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59:1315–1322PubMedGoogle Scholar
  45. 45.
    Kumamoto Y, Suematsu M, Shimazu M, Kato Y, Sano T, Makino N, Hirano KI, Naito M, Wakabayashi G, Ishimura Y, Kitajima M (1999) Kupffer cell-independent acute hepatocellular oxidative stress and decreased bile formation in post-cold-ischemic rat liver. Hepatology 30:1454–1463PubMedCrossRefGoogle Scholar
  46. 46.
    Trinder D, Oates PS, Thomas C, Sadleir J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46:270–276PubMedCrossRefGoogle Scholar
  47. 47.
    Koch RO, Zoller H, Theurl I, Obrist P, Egg G, Strohmayer W, Vogel W, Weiss G (2003) Distribution of DMT1 within the human glandular system. Histol Histopathol 18:1095–1101PubMedGoogle Scholar
  48. 48.
    Mukhopadhyay CK, Mazumder B, Fox PL (2000) Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275:21048–21054PubMedCrossRefGoogle Scholar
  49. 49.
    Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • John A. Goss
    • 1
  • Neal R. Barshes
    • 1
  • Saul J. Karpen
    • 1
  • Feng-Qin Gao
    • 1
  • Samuel Wyllie
    • 2
  1. 1.Michael E. DeBakey Department of Surgery, Liver Transplant Center LaboratoryBaylor College of MedicineHoustonUSA
  2. 2.Michael E. Debakey Department of SurgeryThe Methodist Hospital/Baylor College of Medicine Liver CenterHoustonUSA

Personalised recommendations