Skip to main content
Log in

Acquisition of Visuomotor Abilities and Intellectual Quotient in Children Aged 4–10 Years: Relationship with Micronutrient Nutritional Status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lethargy, poor attention, and the high rate and severity of infections in malnourished children affect their educational achievement. We therefore studied the association between visuomotor abilities and intelligence quotient (IQ) and their relationship with iron, zinc, and copper. A cross-sectional study was carried out on a sample of 89 healthy children (age range, 4–10 years). Evaluations of visuomotor ability and IQ were performed with the Developmental Test of Visual Motor Integration (VMI) and the Scale for Measurement of Intelligence for children aged 3–18 years, respectively. Nutritional status was assessed using anthropometry and biochemical assessments, which included serum ferritin, zinc and copper levels, and Hb. The sample was classified as having low or normal VMI scores: 47 children (52.8%, mean age 7 ± 1.5 years) had low VMI, and 42 (47.2%, mean age 7 ± 2.06 years) had normal VMI. There were no statistically significant differences in socioeconomic and cultural condition between both groups. We found significantly higher serum copper and ferritin levels in normal as compared to low VMI, but we did not find any differences with zinc. IQ was significantly higher in normal vs low VMI children. The fact that children with abnormal VMI presented low mean serum copper and ferritin concentrations could indicate that copper and iron deficiencies in this sample could be related with visuomotor abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keen CL, Gershwin ME (1999) Zinc deficiency and immune function. In: Olson RE (ed) Annual review of nutrition. Annual Reviews, Palo Alto, pp 415–431

  2. Pellegrini Braga J, Kerbauy J, Fisberg M (1995) Zinc, copper and iron and their interrelations in the growth of sickle cell patients. Arch Latinoam Nutr 45:198–203

    PubMed  CAS  Google Scholar 

  3. Stanbury JB (1994) The damaged brain of iodine deficiency. Cognizant Communication, New York

    Google Scholar 

  4. Rivera JA, Hotz C, Gonzalez Cossio T, Neufeld L, Garcia Guerra A (2003) The effect of micronutrient deficiencies on child growth: a review of results from community-based supplementation trials. J Nutr 133:4010S–4020S

    PubMed  CAS  Google Scholar 

  5. Weimberg T (1982) Behavioural and phisiology effect in iron deficiency in the rat. In: Pollitt E, Leíble RL (eds) Iron deficiency. Brain biochemistry and behaviour. Raven, New York, pp 92– 123

  6. Algarin C, Peirano P, Garrido M, Pizarro F, Lozoff B (2003) Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res 53:217–223

    Article  PubMed  CAS  Google Scholar 

  7. Black MM (2003) The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr 133:1473S–1476S

    PubMed  CAS  Google Scholar 

  8. Golub MS, Takeuchi PT, Keen CL, Gershwin ME, Hendrickx AG, Lonnerdal B (1994) Modulation of behavioral performance of prepuberal monkeys by moderate dietary zinc deprivation. Am J Clin Nutr 60:238–243

    PubMed  CAS  Google Scholar 

  9. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc containing neuron. J Nutr 130:1471S–1483S

    PubMed  CAS  Google Scholar 

  10. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    PubMed  CAS  Google Scholar 

  11. Araya M, Koletzko B, Uauy R (2003) Copper deficiency and excess in infancy: developing a research agenda. J Pediatr Gastroenterol Nutr 37:422–429

    Article  PubMed  CAS  Google Scholar 

  12. Lozoff B, Brittenham GM, Viteri FE, Wolf AW, Urrutia JJ (1982) The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. J Pediatr 100:351–357

    Article  PubMed  CAS  Google Scholar 

  13. Lozoff B, Brittenham GM, Wolf AW, McClish DK, Khunert PM, Jimenez E et al (1987) Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 79:981–995

    PubMed  CAS  Google Scholar 

  14. Walter T, De Andraca I, Chadud P, Perales CG (1989) Iron deficiency anemia: adverse effects on infant psychomotor development. Pediatrics 84:7–17

    PubMed  CAS  Google Scholar 

  15. Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P (2003) Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 112:846–854

    PubMed  Google Scholar 

  16. Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera FA, Icaza G (2001) Effect of zinc supplementation on development and growth of Chilean infants. J Pediatr 138:229–235

    Article  PubMed  CAS  Google Scholar 

  17. Whaley SE, Sigman M, Neumann C, Bwibo N, Guthrie D, Weiss RE et al (2003) The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr 133:3965S–3971S

    PubMed  CAS  Google Scholar 

  18. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105:E51

    Article  PubMed  CAS  Google Scholar 

  19. Lozoff B, Jimenez E, Wolf AW (1991) Long-term developmental outcome of infants with iron deficiency. N Engl J Med 325:687–694

    Article  PubMed  CAS  Google Scholar 

  20. Case-Smith J (1995) The relationships among sensorimotor components, fine motor skill, and functional performance in preschool children. Am J Occup Ther 49:645–652

    PubMed  CAS  Google Scholar 

  21. Beery KE (1989) The VMI Developmental test of visual-motor integration, administration, scoring, and teaching manual, 3rd revision. Modern Curriculum, Toronto

    Google Scholar 

  22. Armstrong BB, Knopf KF (1982) Comparison of the Bender-Gestalt and revised Developmental Test of Visual-Motor Integration. Percept Mot Skills 55:164–166

    PubMed  CAS  Google Scholar 

  23. Aylward EH, Schmidt S (1986) An examination of three tests of visual motor integration. J Learn Disab 19:328–330

    CAS  Google Scholar 

  24. Breen MJ (1982) Comparison of educationally handicapped students scores on the Revised Developmental Test of Visual-Motor Integration and Bender–Gestalt. Percept Mot Skills 54:1227–1230

    PubMed  CAS  Google Scholar 

  25. Breen MJ, Carlson M, Lehman J (1985) The Revised Developmental Test of Visual Motor Integration: its relation to the VMI, WISC-R, and Bender Gestalt for a group of elementary aged learning disabled students. J Learn Disab 18:136–138

    Article  CAS  Google Scholar 

  26. Terman L, Merrill M (1975) Medida de la inteligencia. Espasa-Calpe, Madrid

    Google Scholar 

  27. Alonso Tapia J (1992) Evaluación de la inteligencia desde el enfoque de Binet-Terman- Weschler. In: Fernández-Ballesteros R (ed) Introducción a la evaluación psicológica. Pirámide, Madrid

  28. INDEC (1984) Anuario Estadístico, La pobreza en la Argentina, Buenos Aires

  29. Romero F, Lucero L (2003) Relación entre habilidades visuomotoras y habilidad para la copia de letras, Tesis de Licenciatura de Terapia Ocupacional. Facultad de Ciencias de la Salud y Servicio Social, Universidad Nacional de Mar del Plata, Argentina

    Google Scholar 

  30. Comité Nacional de Crecimiento y Desarrollo (2001) Guías para la Evaluación del Crecimiento, 2nd edn. Sociedad Argentina de Pediatría, Buenos Aires

    Google Scholar 

  31. CDC–National Center for Health Statistics (2000) CDC Growth Charts. United States. http://www.cdc.gov/growthcharts

  32. Centers for Disease Control and Prevention (1998) Recommendations to prevent and control iron deficiency in the United States. MMWR Recomm Rep 47(RR3):1–29

    Google Scholar 

  33. Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:4150–4157

    PubMed  Google Scholar 

  34. Castillo-Durán C, Fisberg M, Valenzuela A, Egaña JI, Uauy R (1983) Controlled trial of copper supplementation during the recovery from marasmus. Am J Clin Nutr 37:898–903

    PubMed  Google Scholar 

  35. Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academies, Washington, DC

    Google Scholar 

  36. Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies, Washington, DC

    Google Scholar 

  37. Di Iorio S, Urrutia MI, Rodrigo A (1998) Desarrollo psicológico, nutrición y pobreza. Arch Arg Ped 96:219

    Google Scholar 

  38. Black MM, Baqui AH, Zaman K, Ake Persson L, El Arifeen S, Le K et al (2004) Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80:903–910

    PubMed  CAS  Google Scholar 

  39. Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci U S A 103:14919–14924

    Article  PubMed  CAS  Google Scholar 

  40. Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33:81–90

    Article  PubMed  CAS  Google Scholar 

  41. Cordano A (1998) Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr 67:1012S–1016S

    PubMed  CAS  Google Scholar 

  42. Grantham-McGregor SM, Ani CC (1999) The role of micronutrients in psychomotor and cognitive development. Br Med Bull 55:511–527

    Article  PubMed  CAS  Google Scholar 

  43. Faber M, Kvalsvig JD, Lombard CJ, Benade AJ (2005) Effect of a fortified maize-meal porridge on anemia, micronutrient status, and motor development of infants. Am J Clin Nutr 82:1032–1039

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an unrestricted grant received from CINUT and the International Copper Association. GS Etchegoyen is member of the research career from CONICET. We are grateful to A. Di Maggio for assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio F. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, H.F., Malpeli, A., Etchegoyen, G. et al. Acquisition of Visuomotor Abilities and Intellectual Quotient in Children Aged 4–10 Years: Relationship with Micronutrient Nutritional Status. Biol Trace Elem Res 120, 92–101 (2007). https://doi.org/10.1007/s12011-007-8023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8023-5

Keywords

Navigation