Skip to main content
Log in

Availability of Essential Elements in Nutrient Supplements Used as Antidiabetic Herbal Formulations

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Five brands of antidiabetic herbal formulations as tablets, Diabetex, Divya Madhu Nashini, Jambrushila, Diabeticin, and Madhumeh Nashini, from different pharmacies were analyzed for six minor (Na, K, Ca, Cl, Mg, and P) and 20 trace (As, Ba, Br, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mn, Rb, Sb, Sc, Se, Sm, Th, V, and Zn) elements by thermal neutron irradiation followed by high-resolution gamma ray spectrometry. Further Ni, Cd, and Pb were determined by atomic absorption spectrophotometry. Most elements vary in a narrow range by a factor of 2–4 while a few others vary in a wide range, e.g., Na (0.05–0.67 mg/g), Mn (26.7–250 μg/g), and V (0.26–2.50 μg/g). All the five brands contain K, Cl, Mg, P, and Ca as minor constituents along with mean trace amounts of Cr (2.11 ± 0.67 μg/g), Cu (15.7 ± 7.11 μg/g), Fe (459 ± 171 μg/g), Mn (143 ± 23 μg/g), Se (238 ± 112 ng/g), and V (0.99 ± 0.93 μg/g). Jambrushila is enriched in Na, Ca, Mg, Cl, Fe, Cu, Se, and Zn, essential nutrients responsible for curing diabetes. Dietary intake of Mn, Fe, and Cu are greater than 10% of the recommended dietary allowance, whereas that for Zn and Se is less than 2%. Mean contents of toxic elements (As, Cd, Hg, and Pb) were found below permissible limits except in Jambrushila. Cr and Zn were inversely correlated with r = −0.81, whereas Rb and Cs exhibit linear correlation (r = 0.93) in five brands. C, H, N analysis showed C ∼ 55%, H ∼ 12%, and N ∼ 2% with a total of ∼70% organic matter. However, thermal decomposition studies at 700°C suggest less than 5% nonvolatile metal oxides. Herbal formulations contain minor and trace elements in bioavailable forms that favorably influence glucose tolerance and possibly increase the body’s ability to ameliorate development of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krentz AJ, Bailey C (2006) Type 2 diabetes in practice, 2nd edn. Royal Society of Medicine, London, p 199

    Google Scholar 

  2. Huang KC (1999) The pharmacology of Chinese herbs. CRC, Boca Raton, p 373

    Google Scholar 

  3. Sridhar GR, Rao PV, Ahuja MMS (2002) In: Ahuja MMS (ed) RSSDI Textbook of diabetes. RSSDI, Hyderabad, pp 95–112

    Google Scholar 

  4. Sivarajan VV, Balachandran I (1996) Ayurvedic drugs and their plant sources. IBH, New Delhi, p 570

    Google Scholar 

  5. Paranjpe P (2001) Indian medicinal plants forgotten healers—a guide to ayurvedic herbal medicine. Chaukhamba Sanskrit Pratisthan, Delhi, p 314

    Google Scholar 

  6. Wood M (1997) The book of herbal wisdom: using plants as medicines. North Atlantic, California, p 535

    Google Scholar 

  7. Lele RD (2001) Ayurveda and modern medicine. Bharatiya Vidya Bhawan, Mumbai, p 552

    Google Scholar 

  8. Lele RD (2005) Indian biotechnology: challenges and opportunities—a clinician’s perspective. Indian Nucl Soc News 2:3–15

    Google Scholar 

  9. World Health Organization. Diabetes programme, http://www.who.int/diabetes/en/

  10. Grodner M, Anderson SL, De Young S (2000) Diabetes mellitus. In: Grodner M, Roth SL, De Young S (eds) Foundations and clinical applications of nutrition: a nursing approach. Mosby, St. Louis, MO, pp 540–548

    Google Scholar 

  11. Garg MC, Bansal DD (2000) Protective antioxidant effect of vitamin C and E in streptozotocin induced diabetic rats. Indian J Exp Biol 38:101–104

    PubMed  CAS  Google Scholar 

  12. Upritchard JE, Sutherland WH, Mann JL (2000) Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care 23:733–738

    Article  PubMed  CAS  Google Scholar 

  13. Chait A, Malinow MR, Nevin DN (1999) Increased dietary micronutrients decrease serum homocysteine concentration in patients at high risk of cardiovascular disease. Am J Clin Nutr 70:881–887

    PubMed  CAS  Google Scholar 

  14. Head KA (2001) Natural therapies for ocular disorders, part two: cataracts and glaucoma. Altern Med Rev 6:141–166

    PubMed  CAS  Google Scholar 

  15. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13:1203–1218

    Article  PubMed  CAS  Google Scholar 

  16. Svoboda RE (2002) Your Ayurvedic constitution. Motilal Banarasidas, Prakruti, p 206

    Google Scholar 

  17. Trujillo J (2006) Incretin hormones in the treatment of type 2 diabetes. Formulary 41:130–132

    CAS  Google Scholar 

  18. Francisca EC, Codner E (2006) Insulin analogues: searching for a physiological replacement. Rev Med Chile 134:239–250

    CAS  Google Scholar 

  19. Kar A, Choudhary BK, Bandyopadhyay NG (2003) Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol 84:105–108

    Article  PubMed  Google Scholar 

  20. Gholap S, Kar A (2005) Gymnemic acids from gymnema sylvestre potentially regulates dexamethasone-induced hyperglycemia in mice. Pharm Biol 43:192–195

    Article  CAS  Google Scholar 

  21. Triggiani V, Resta F, Guastamacchia E, Sabba C, Licchelli B, Ghiyasaldin S, Tafaro E (2006) Role of antioxidants, essential fatty acids, carnitine, vitamins, phytochemicals and trace elements in the treatment of diabetes mellitus and its chronic complications. Drug Targets 6:77–93

    Article  CAS  Google Scholar 

  22. Mukhtar HM, Ansari SH, Ali M, Bhat ZA, Naved T (2005) Effect of aqueous extract of Pterocarpus marsupium wood on alloxan-induced diabetic rats. Pharmazie 60:478–479

    PubMed  CAS  Google Scholar 

  23. Prince PSM, Padmanabhan M, Menon VP (2004) Restoration of antioxidant defence by ethanolic Tinospora cordifolia root extract in alloxan-induced diabetic liver and kidney. Phytother Res 18:785–787

    Article  PubMed  Google Scholar 

  24. Shetty AK, Kumar GS, Sambaiah K, Salimath PV (2005) Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Plant Foods Human Nutr 60:109–112

    Article  CAS  Google Scholar 

  25. Preet A, Gupta BL, Siddiqui MR, Yadava PK, Baquer NZ (2005) Restoration of ultrastructural and biochemical changes in alloxan-induced diabetic rat sciatic nerve on treatment with Na3VO4 and Trigonella—a promising antidiabetic agent. Mol Cellular Biochem 278:21–31

    Article  CAS  Google Scholar 

  26. Rajsekaran S, Sivagnanam K, Subramaniam S (2005) Mineral contents of Aloe vera leaf gel and their streptozotocin induced diabetic rats. Biol Trace Elem Res 108:185–195

    Article  Google Scholar 

  27. Bonnefont-Rousselot D (2004) The role of antioxidant micronutrients in the prevention of diabetic complications. Treat Endocrinol 3:41–52

    Article  PubMed  CAS  Google Scholar 

  28. Rajurkar NS, Pardeshi BM (1997) Analysis of some herbal plants from India used in the control of diabetes mellitus by NAA and AAS techniques. Appl Radiat Isotopes 48:1059–1062

    Article  CAS  Google Scholar 

  29. Narendhirakannan RT, Subramanian S, Kandaswamy M (2005) Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res 103:109–115

    Article  PubMed  CAS  Google Scholar 

  30. Naga Raju GJ, Sarita P, Ramana Murthy GA, Ravi Kumar M, Reddy BS, Charles MJ, Lakshminarayana S, Reddy TS, Reddy BS, Vijayan M (2006) Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 64:893–900

    Article  PubMed  CAS  Google Scholar 

  31. Choudhury RP, Garg AN (2007) Variation in essential, trace and toxic elemental contents in Murraya Koenigii—a spice and medicinal herb from different Indian states. Food Chem 104:1454–1463

    Article  CAS  Google Scholar 

  32. Choudhury RP, Acharya RN, Nair AGC, Reddy AVR, Garg AN (2008) Availability of essential trace elements in medicinal herbs used for diabetes mellitus and their possible correlations. J Radioanal Nucl Chem 276 (in press)

  33. Certificate of Analysis (1993) Standard reference material 1547, Peach leaves. National Institute of Standards and Technology, USA, p 5

    Google Scholar 

  34. Dybczynski R, Danko B, Kulisa K, Maleszewska E, Polkowska-Motrenko H, Samczynski Z, Szopa Z (2004) Preparation and preliminary certification of two new reference materials for inorganic trace analysis. J Radioanal Nucl Chem 259:409–413

    Article  CAS  Google Scholar 

  35. Choudhury RP, Kumar A, Reddy AV, Garg AN (2007) Thermal neutron activation analysis of essential and trace elements and organic constituents in Trikatu; an Ayurvedic formulation. J Radioanal Nucl Chem 274:411–419

    Google Scholar 

  36. Garg AN, Kumar A, Choudhury RP (2007) Phosphorus contents in biological standards and sample by thermal neutron activation and β-counting. J Radioanal Nucl Chem 271:481–488

    Article  CAS  Google Scholar 

  37. Wilson B, Braithwaite A, Pyatt FB (2005) An evaluation of procedures for the digestion of soils and vegetation from areas with metalliferous pollution. Toxicol Environ Chem 87:335–339

    Article  CAS  Google Scholar 

  38. Hasanein P, Parviz M, Keshavarz M, Javanmardi K, Mansoori M, Soltani N (2006) Oral magnesium administration prevents thermal hyperalgesia induced by diabetes in rats. Diabetes Res Clinical Practice 73:17–22

    Article  CAS  Google Scholar 

  39. O’Dell BL, Sunde RA (eds) (1997) Handbook of nutritionally essential mineral elements. Marcell Dekker, New York

    Google Scholar 

  40. Prasad AS (1993) Essential and toxic trace elements in human health and disease. Alan R. Liss, New York

    Google Scholar 

  41. Iyengar V, Kastens RF (2002) Use of nuclear and isotopic techniques for addressing nutritional problems. Food Nutr Bull 23(3 Suppl):5–6

    PubMed  Google Scholar 

  42. Anderson RA (1989) Essentiality of chromium in humans. Sci Total Environ 86:75–81

    Article  PubMed  CAS  Google Scholar 

  43. Garg AN, Kumar A, Maheshwari G, Sharma S (2005) Isotope dilution analysis for the determination of zinc in blood samples of diabetic patients. J Radioanal Nucl Chem 263:39–43

    Article  CAS  Google Scholar 

  44. Haase H, Maret W (2005) Perturbation of zinc metabolism in diabetes mellitus. Ernaehr Med 20:126–132

    Article  CAS  Google Scholar 

  45. Ritz E, Haxsen V (2005) Diabetic nephropathy and anaemia. Eur J Clin Investig 35:66–74

    Article  CAS  Google Scholar 

  46. Mueller AS, Bosse A, Pallauf J (2006) Selenium, an ambivalent factor in diabetes? Established facts, recent findings perspectives. Curr Nutr Food Sci 2:151–168

    Article  CAS  Google Scholar 

  47. Yang X, Li SY, Dong F, Ren J, Sreejayan N (2006) Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3. J Inorg Biochem 100:187–193

    Article  Google Scholar 

  48. Backstrom KGE, Dahlback CMO, Edman P, Johannson ACB (2005) United States Patent no. 6846401

  49. Haratake M, Fukunaga M, Ono M, Nakayama M (2005) Synthesis of vanadium (IV, V) hydroxamic acid complexes and in vivo assessment of their insulin-like activity. J Biol Inorg Chem 10:250–258

    Article  PubMed  CAS  Google Scholar 

  50. Thompson KH (1999) Vanadium and diabetes. Biofactors 10:43–51

    PubMed  CAS  Google Scholar 

  51. Akbarov AB, Aripkhodzhaeva FA (2000) Antidiuretic and hypoglycemic complex comprising manganese, glutamic acid, and vitamin C coordination compounds. Uzbekistan Patent no.2000054784, p 17

  52. Frank A, Sell DR, Danielsson R, Fogarty JF, Monnier VM (2000) A syndrome of molybdenosis, copper deficiency, and type 2 diabetes in the moose population of south-west Sweden. Sci Total Environ 249:123–131

    Article  PubMed  CAS  Google Scholar 

  53. Zaidi JH, Fatima I, Quraishi IH, Sohani MS (2004) Trace element evaluation of some medicinal herbs by instrumental neutron activation analysis. Radiochim Acta 92:363–368

    Article  CAS  Google Scholar 

  54. Chan K (2003) Some aspects of toxic contaminants in herbal medicines. Chemospere 52:1361–1371

    Article  CAS  Google Scholar 

  55. Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS (2004) Heavy metal contents of Ayurvedic herbal medicine products. J Am Med Assoc 292:2868–2873

    Article  CAS  Google Scholar 

  56. Haider S, Naithani V, Barthwal J, Kakkar P (2004) Heavy metal contents in some therapeutically important medicinal plants. Bull Environ Contam Toxicol 249:119–127

    Article  Google Scholar 

  57. Merian E (ed) (1991) Metals and their compounds in environment; occurrence, analysis and biological relevance. Weinheim VCH, New York

    Google Scholar 

  58. Goldhaber SB (2003) Trace element risk assessment: essentiality vs toxicity. Regulatory Toxicol Pharmacol 38:232–242

    Article  CAS  Google Scholar 

  59. US Department of Health and Human Services (2005) Arsenic toxicity, standards and regulations. http://www.atsdr.cdc.gov.HEC/CSEM/arsenic standards regulations html

  60. (2003) Ahmedabad is India’s most polluted city. The Times of India, Ahmedabad, 23rd August

  61. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603

    Article  PubMed  CAS  Google Scholar 

  62. Underwood EJ (1977) Trace elements in human health and animal nutrition, 4th edn. Academic, New York, p 345

    Google Scholar 

  63. Food and Nutrition Board (1989) Recommended dietary allowances, 10st edn. National Academy of Sciences, Washington, DC

    Google Scholar 

Download references

Acknowledgements

This work was initiated as a part of BRNS, DAE project 37/5/2000. Grateful thanks are due to Dr. V. K. Manchanda, Head Radiochemistry Division, BARC, Mumbai, for permission to use their facilities and to Dr R. Acharya and Mr. T.N. Newton Natheniel for active cooperation and help during the short irradiation work. MHRD fellowship to RPC is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, R.P., Reddy, A.V.R. & Garg, A.N. Availability of Essential Elements in Nutrient Supplements Used as Antidiabetic Herbal Formulations. Biol Trace Elem Res 120, 148–162 (2007). https://doi.org/10.1007/s12011-007-8022-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8022-6

Keywords

Navigation