Skip to main content
Log in

The Interaction Between Selenium Status, Sex Hormones, and Thyroid Metabolism in Adolescent Girls in the Luteal Phase of their Menstrual Cycle

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present work was to study all physiological relationships among selenium status (SeS), sex hormones secretion (SH), and thyroid metabolism (ThM) in healthy adolescent girls, at one time. Forty-four girls aged 13.4–16.6 years (mean age, 14.5 ± 0.5 years) entered the statistical model. Parameters reflecting SeS: plasma selenium concentration (Se) and plasma glutathione peroxidase activity (GPX3); SH: serum estradiol (E2) and progesterone (P4); age of menarche (AoM); and ThM: thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), antithyroid peroxidase antibodies (anti-TPO) in serum, and thyroid volume (ThV), were determined, and the interactions between them were evaluated by means of the partial least squares method (PLS). PLS method was, for the first time, successfully applied to the problem of selenium and hormone interactions and revealed that selenium status and female reproductive system are interrelated and affect thyroid physiology in adolescent girls in the luteal phase. The strongest associations were revealed for the pairs of parameters, Se and fT4/fT3, Se and P4, the modest ones for the pairs, Se and ThV, P4 and fT4/fT3, Se and AoM, and P4 and AoM. There was no correlation between E2, GPX3, and TSH, and any other considered parameter. Se and P4 had the greatest influence on ThM parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

anti-TPO:

antithyroid peroxidase antibodies

AoM:

age of menarche

E2 :

serum estradiol

fT3:

free triiodothyronine

fT4:

free thyroxine

fT4/fT3:

free thyroxine/free triiodothyronine ratio

GPX:

glutathione peroxidase

GPX3:

plasma glutathione peroxidase activity

P4 :

serum progesterone

PLS:

partial least squares method

RBC:

red blood cells

SH:

sex hormones secretion

Se:

plasma selenium concentration

SeS:

selenium status

T3:

triiodothyronine

T4:

thyroxine

T4/T3:

thyroxine/triiodothyronine ratio

ThM:

thyroid metabolism

TSH:

thyroid stimulating hormone

ThV:

thyroid volume

References

  1. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  PubMed  CAS  Google Scholar 

  2. Köhrle J, Jakob F, Contempré B et al (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  PubMed  CAS  Google Scholar 

  3. Krassas GE (2000) Thyroid disease and female reproduction. Fertil Steril 74:1063–1070

    Article  PubMed  CAS  Google Scholar 

  4. Zhao X, Lorenc H, Stephenson H et al (2005) Thyroid hormone can regulate estrogen-mediated transcription from a consensus estrogen response element via phosphorylation of estrogen receptor α. Proc Natl Acad Sci U S A 102:4890–4895

    Article  PubMed  CAS  Google Scholar 

  5. Ohwada M, Suzuki M, Ato I et al (1996) Glutathione peroxidase activity in endometrium: effects of sex hormones and cancer. Gynecol Oncol 60:277–282

    Article  PubMed  CAS  Google Scholar 

  6. Behne D, Wolters W (1979) Selenium content and glutathione peroxidase activity in the plasma and erythrocytes of non-pregnant and pregnant women. J Clin Chem Clin Biochem 17:133–135

    PubMed  CAS  Google Scholar 

  7. Rudolph N, Wong SL (1978) Selenium and glutathione peroxidase activity in maternal and cord plasma and red cells. Pediatr Res 12:789–792

    PubMed  CAS  Google Scholar 

  8. Zachara BA, Wardak C, Didkowski W et al (1993) Changes in blood selenium and glutathione concentrations and glutathione peroxidase activity in human pregnancy. Gynecol Obstet Investig 35:12–17

    Article  CAS  Google Scholar 

  9. Smith AM, Peng-Hsing Chang M, Medeiros LC (2000) Generational differences in selenium status of women. Biol Trace Elem Res 75:157–165

    Article  PubMed  CAS  Google Scholar 

  10. Ha EJ, Smith AM (2003) Plasma selenium and plasma and erythrocyte glutathione peroxidase activity increase with estrogen during the menstrual cycle. J Am Coll Nutr 22:43–51

    PubMed  CAS  Google Scholar 

  11. Capel ID, Jenner M, Williams DC et al (1981) The effect of prolonged oral contraceptive steroid use on erythrocyte glutathione peroxidase activity. J Steroid Biochem 14:729–732

    Article  PubMed  CAS  Google Scholar 

  12. Karita K, Takano T, Satoh K et al (2004) Variations in plasma selenium levels as a result of the menstrual cycle and pregnancy in healthy Japanese women. Biol Trace Elem Res 99:83–91

    Article  PubMed  CAS  Google Scholar 

  13. WHO, UNICEF, ICCIDD (1994) Indicators for assessing iodine deficiency disorders and their control through salt iodization. World Health Organization, Geneva (WHO/NUT/94.6)

  14. Zagrodzki P, Nicol F, McCoy MA et al (1998) Iodine deficiency in cattle: compensatory changes in thyroidal selenoenzymes. Res Vet Sci 64:209–211

    Article  PubMed  CAS  Google Scholar 

  15. Clementi S, Cruciani G, Curti G (1986) Some applications of the partial least-squares method. Anal Chim Acta 191:149–160

    Article  CAS  Google Scholar 

  16. Frank IE, Feikema J, Constantine N et al (1984) Prediction of product quality from spectral data using the partial least-squares method. J Chem Inf Comput Sci 24:20–24

    Article  Google Scholar 

  17. Boulesteix AL, Strimmer K (2007) Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 8:32–44

    Article  PubMed  CAS  Google Scholar 

  18. Furdal S (1989) Statistical modelling in empirical research. The Institute of Sport, Warsaw (in Polish)

    Google Scholar 

  19. Gutekunst R, Martin-Teichert H (1993) Requirements for goiter surveys and the determination of thyroid size. In: Delange F, Dunn JT, Glinoer D (eds) Iodine deficiency in Europe. A continuing concern. Plenum Press, New York, pp 109–115

  20. Zagrodzki P (2001) Selenium status and the thyroid function. Pol J Endocrinol 52:573–583 (in Polish)

    CAS  Google Scholar 

  21. Joshi JV, Bhandarkar SD, Chadha M et al (1993) Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre. J Postgrad Med 39:137–141

    PubMed  CAS  Google Scholar 

  22. Arthur JR, Bermano G, Mitchell JH et al (1996) Regulation of selenoprotein gene expression and thyroid hormone metabolism. Biochem Soc Trans 24:384–388

    PubMed  CAS  Google Scholar 

  23. Capel ID, Smallwood AE (1983) Sex differences in the glutathione peroxidase activity of various tissues of the rat. Res Commun Chem Pathol Pharmacol 40:367–378

    PubMed  CAS  Google Scholar 

  24. Kvicala J, Zamrazil V, Soutorova M et al (1995) Correlations between parameters of body selenium status and peripheral thyroid parameters in the low selenium region. Analyst 120:959–965

    Article  PubMed  CAS  Google Scholar 

  25. Hawkes WCh, Keim NL (2003) Dietary selenium intake modulates thyroid hormone and energy metabolism in men. J Nutr 133:3443–3448

    PubMed  CAS  Google Scholar 

  26. Kamada H, Hodate K (1998) Effect of dietary selenium supplementation on the plasma progesterone concentration in cows. J Vet Med Sci 60:133–135

    Article  PubMed  CAS  Google Scholar 

  27. Derumeaux H, Valeix P, Castetbon K et al (2003) Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur J Endocrinol 148:309–315

    Article  PubMed  CAS  Google Scholar 

  28. Holben DH, Smith AM, Ilich JZ et al (2002) Selenium intakes, absorption, retention, and status in adolescent girls. J Am Diet Assoc 102:1082–1087

    PubMed  Google Scholar 

  29. Hegedüs L, Karstrup S, Rasmussen N (1986) Evidence of cyclic alterations of thyroid size during the menstrual cycle in healthy women. Am J Obstet Gynecology 155:142–145

    Google Scholar 

Download references

Acknowledgements

Barbara Jaworska-Stoszko is appreciated for her technical assistance in GPX3 measurements. We would like to thank Dr. Stanley Johnson for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Zagrodzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagrodzki, P., Ratajczak, R. & Wietecha-Posłuszny, R. The Interaction Between Selenium Status, Sex Hormones, and Thyroid Metabolism in Adolescent Girls in the Luteal Phase of their Menstrual Cycle. Biol Trace Elem Res 120, 51–60 (2007). https://doi.org/10.1007/s12011-007-8012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8012-8

Keywords

Navigation