Selenium–Mercury Interactions in Man and Animals

Abstract

Selenium–mercury interactions were most extensively studied in relation to alleviation of Hg toxicity by added selenium. This presentation considers the influence of mercury on endogenous selenium, on its tissue and cellular “status” after lifelong or acute exposure to mercury vapor (Hgo). Discussed are data obtained from (1) humans living near or working in a mercury mine, and (2) rats experimentally exposed in the mine. Mercury vapor is unique—or similar to methylmercury—because of its ability to penetrate cell membranes and so invade all cells, where it is oxidized in the biologically active form (Hg++) by catalase. Such in situ-generated ions can react with endogenously generated highly reactive Se metabolites, like HSe−, and render a part of the selenium unavailable for selenoprotein synthesis. Data on human populations indicate that in moderate Hg exposure combined with an adequate selenium supply through diet, Se bioavailability can be preserved. On the other hand, the results of an acute exposure study emphasize the dual role of selenium in mercury detoxification. Besides the well-known Se coaccumulation through formation of nontoxic Hg–Se complexes, we observed noticeable Se (co)excretion, at least at the beginning of exposure. The higher Hg accumulation rate in the group of animals with lower basal selenium levels can also point to selenium involvement in mercury excretion. In such conditions there is a higher probability for decreased selenoprotein levels (synthesis) in some tissues or organs, depending on the synthesis hierarchy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Parizek J, Ostadalova I (1967) Experientia 23:142–143

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Koeman JH, Peters WHM, Koudstaal-Hol CHM, Tijoe S, de Goeij JJM (1973) Nature 245:383–384

    Article  Google Scholar 

  3. 3.

    Nigro M, Leonzio C (1996) Mar Ecol Prog Ser 135:137–143

    Article  CAS  Google Scholar 

  4. 4.

    Kosta L, Byrne AR, Zelenko V (1975) Nature 254:238–239

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Falnoga I, Tusek-Znidaric M, Horvat M, Stegnar P (2000) Environ Res 84:211–218

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Nylander M, Weiner J (1989) Br J Ind Med 46:750–752

    Google Scholar 

  7. 7.

    Weiner J, Nylander M (1991) Br J Ind Med 48:729–734

    PubMed  Google Scholar 

  8. 8.

    Shirabe T, Eto K, Takeuchi T (1979) Neurotoxicology 1:349–356

    CAS  Google Scholar 

  9. 9.

    Drasch G, Wanghofer E, Roider G, Strobach S (1996) J Trace Elem Med Biol 10:251–254

    PubMed  CAS  Google Scholar 

  10. 10.

    Kosta L, Byrne AR, Zelenko V, Stegnar P, Dermelj M, Ravnik V (1974) Vestnik SDK 21:49–76 (in English)

    CAS  Google Scholar 

  11. 11.

    Koeman JH, van de Ven WSM, de Goeij JJM, Tjioe PS, van Haaften JL (1975) Sci Total Environ 3:279–287

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Nakamuro K, Okunoi T, Hasagawa T (2000) J Health Sci 46:418–421

    CAS  Google Scholar 

  13. 13.

    Yoneda S, Suzuki KT (1997) Toxicol Appl Pharmacol 143:274–280

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gailer J (2007) Coord Chem Rev 251:234–254

    Article  CAS  Google Scholar 

  15. 15.

    Danscher G, Stoltenberg M (2006) Prog Histochem Cytochem 41:57–140

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Drasch G, Mailander S, Schlosser C, Roider G (2000) Biol Trace Elem Res 77:219–230

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Jacob C, Giles GI, Giles NM, Sies H (2003) Angew Chem Int Ed 42:4742–4758

    Article  CAS  Google Scholar 

  18. 18.

    Aoi T, Higuchi T, Kikodoro R, Fukumura R, Yagi A, Ohguchi S, Sasi A, Hayashi H, Sakamoto N, Hanaichi T (1985) Hum Toxicol 4:637–642

    PubMed  CAS  Google Scholar 

  19. 19.

    Falnoga I, Tušek-Žnidarič M, Milačič R (1998) Acta Chim Slov 45:229–237

    CAS  Google Scholar 

  20. 20.

    Björkman L, Palm B, Nylander M, Nordberg M (1994) Biol Trace Elem Res 40:255–265

    PubMed  Article  Google Scholar 

  21. 21.

    Falnoga I, Tušek-Žnidarič M, Stegnar P (2006) BioMetals 19:283–294

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Kotnik J, Horvat M, Dizdarevič T (2005) Athm Environ 39:7570–7579

    Article  CAS  Google Scholar 

  23. 23.

    Falnoga I, Kobal AB, Stibilj V, Horvat M (2002) Biol Ttrace Elem Res 89:25–33

    Article  CAS  Google Scholar 

  24. 24.

    Kobal AB, Horvat M, Prezelj M, Sešek-Briški A, Krsnik M, Dizdarevič T, Mazej D, Falnoga I, Stibilj V, Arnerič N, Kobal-Grum D, Osredkar J (2004) J Ttrace Eleme Med Biol 17:261–274

    Article  CAS  Google Scholar 

  25. 25.

    Burk RF, Hill KE (2005) Annu Rev Nutr 25:215–235

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) J Pineal Res 42:28–42

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Byrne AR, Kosta L (1975) Talanta 21:1083

    Article  Google Scholar 

  28. 28.

    Magos L, Halbach S, Clarkson TW (1978) Biochem Pharmacol 27:1373–1377

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Schomburg L, Reise C, Michaelis M, Griebert E, Klein MO, Sapin R, Schweizer U, Koherle J (2006) Endocrinology 147:10306–10313

    Google Scholar 

  30. 30.

    Richardson DR (2005) Biochem J 386(Pt 2):e5–e7

    PubMed  CAS  Google Scholar 

  31. 31.

    Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köherle J, Schomburg L (2005) Biochem J 386:221–226

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Bulato C, Bosello V, Ursini F, Maiorino M (2007) Free Radic Biol Med 42:118–123

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to the whole group working on Idrija mercury subject during the last 40 years:

Dr. Alfred B. Kobal—researcher and medical doctor responsible for the health of miners after the Second World War until the closer of mine; Dr. Anthony R. Byrne—responsible for radiochemistry, development, and application of analytical techniques for Hg and Se, a coauthor of the first publication about Hg and Se coaccumulation in molar ratio 1:1 in human organs [4]; Dr. Peter Stegnar—former head of department and our Ph.D. supervisor and Dr. Mirjana Škreblin—working on metabolism of mercury in man, animals and plants; Nuša Prosenc—for Hg, Se determinations by RNAA; Dr. Milena Horvat—present head of department and expert for biogeochemical cycling and analytical chemistry of Hg; and Dr. Sitibilj Vekoslava—expert for selenium speciation.

Their work was published in several publications and is cited in the present article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingrid Falnoga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Falnoga, I., Tušek-Žnidarič, M. Selenium–Mercury Interactions in Man and Animals. Biol Trace Elem Res 119, 212–220 (2007). https://doi.org/10.1007/s12011-007-8009-3

Download citation

Keywords

  • Selenium
  • Mercury
  • Interactions
  • Human
  • Rat
  • Organs
  • Selenoprotein P
  • Plasma/Serum
  • GPx
  • Melatonin