Skip to main content
Log in

Zinc Nutritional Status in Adolescents with Down Syndrome

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Studies have evidenced that zinc metabolism is altered in presence of Down syndrome, and zinc seems to have a relationship with the metabolic alterations usually present in this syndrome. In this work, the Zn-related nutritional status of adolescents with Down syndrome was evaluated by means of biochemical parameters and diet. A case–control study was performed in a group of adolescents with Down syndrome (n = 30) and a control group (n = 32), of both sexes, aged 10 to 19 years. Diet evaluation was accomplished by using a 3-day dietary record, and the analysis was performed by the NutWin program, version 1.5. Antropometric measurements were performed for evaluation of body composition. The Zn-related nutritional status of the groups was evaluated by means of zinc concentration determinations in plasma and erythrocytes, and 24-h urinary zinc excretion, by using the method of atomic absorption spectroscopy. The diet of both groups presented adequate concentrations of lipids, proteins, carbohydrates, and zinc. The mean values found for zinc concentration in erythrocytes were 49.2 ± 8.5 μg Zn/g Hb for the Down syndrome group and 35.9 ± 6.1 μg Zn/g Hb for the control group (p = 0.001). The average values found for zinc concentration in plasma were 67.6 ± 25.6 μg/dL for the Down syndrome group and 68.9 ± 22.3 μg/dL for the control group. The mean values found for zinc concentration in urine were 244.3 ± 194.9 μg Zn/24 h for the Down syndrome group and 200.3 ± 236.4 μg Zn/24 h for the control group. Assessment of body composition revealed overweight (26.7%) and obesity (6.6%) in the Down syndrome group. In this study, patients with Down syndrome presented altered zinc levels for some cellular compartments, and the average zinc concentrations were low in plasma and urine and elevated in erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreira LMA, El-Hani CN, Gusmão F (2000) A síndrome de Down e sua patogênese: considerações sobre o determinismo genético. Rev Bras Psiquiatr 22:96–99

    Article  Google Scholar 

  2. Mustacchi Z (2000) Síndrome de Down. In: Mustacchi Z, Peres S (eds) Genética baseada em evidências: síndromes e heranças. Centro Israelita de Assistência ao Menor, São Paulo [CD ROM]

    Google Scholar 

  3. Aguilar RH, Moraes TP, Moraes G (2003) Implicações do estresse oxidativo sobre o metabolismo eritrocitário de pessoas com síndrome de Down. Rev Bras Hematol Hemoter 25:231–237

    Article  Google Scholar 

  4. Bertoti DB (2002) Retardo mental: foco na síndrome de Down. In: Tecklin JS (ed) Fisioterapia pediátrica (3rd edn.). Artmed, Porto Alegre, pp 236–259

    Google Scholar 

  5. Pinto M, Neves J, Palha M, Bicho M (2002) Oxidative stress in Portuguese children with Down syndrome. Downs Syndr Res Pract 8:79–82

    Article  PubMed  Google Scholar 

  6. Garcez ME, Peres W, Salvador M (2005) Oxidative stress and hematologic and biochemical parameters in individuals with Down syndrome. Mayo Clin Proc 80(2):1607–1611

    PubMed  CAS  Google Scholar 

  7. Zitnanová I, Korytár P, Sobotová H, Horáková L, Sustrová M, Pueschel S, Duracková Z (2006) Markers of oxidative stress in children with Down syndrome. Clin Chem Lab Med 44(3):306–310

    Article  PubMed  CAS  Google Scholar 

  8. Yenigun A, Ozkinay F, Cogulu O, Coker C, Cetiner N, Ozzlen G (2000) Hair zinc level in Down syndrome. Downs Syndr Res Pract 9(2):53–57

    Article  Google Scholar 

  9. Maret W (2001) Zinc biochemistry, physiology and homeostasis: recent insights and current trends. BioMetals 14:187–190

    Article  CAS  Google Scholar 

  10. Tanner JM, Whitehause RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

    Article  PubMed  CAS  Google Scholar 

  11. Must A, Dalla G, Dietz WH (1991) Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness. Am J Clin Nutr 53:839–846

    PubMed  CAS  Google Scholar 

  12. Organization Mundial De La Salud (1983) Medicion del Cambio del Estado Nutricional. OMS, Genebra, pp 19–105

    Google Scholar 

  13. Basiotis PP, Welsh SO, Cronin FT, Kelsay JL, Mertz W (1987) Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr 117:1638–1641

    PubMed  CAS  Google Scholar 

  14. Institute of Medicine/Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, cooper, iodine, iron, manganese, molybdenun, nickel, silicon, vanadium, and zinc. National Academy, Washington, DC, p 650

    Google Scholar 

  15. Whitehouse RC, Prasad AS, Rabbani PI, Cossack ZT (1982) Zinc in plasma, neutrophils lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clin Chem 28:475–480

    PubMed  CAS  Google Scholar 

  16. Rodriguez MP, Narizano A, Demczylo V, Cid A (1989) A simpler method for the determination of zinc human plasma levels by flame atomic absorption spectrophotometry. At Spectr 10:68–70

    Google Scholar 

  17. Chumlea WC, Cronk CE (1981) Overweight among chidren with trisomy 21. J Ment Defic Res 25:275–280

    PubMed  Google Scholar 

  18. Luke A, Roizen MJ, Sutton M, Schoeller DA (1996) Nutrient intake and obesity prepubescent in children with Down syndrome. J Am Diet Assoc 96:1262–1267

    Article  PubMed  CAS  Google Scholar 

  19. Whittaker P (1988) Iron and zinc interactions in humans. Am J Clin Nutr 68(Suppl 1):442S–446S

    Google Scholar 

  20. Teksen F, Saylin BS, Aydin A, Sayal A, Isimer A (1998) Antioxidative metabolism in Down syndrome. Biol Trace Elem Res 63(2):123–127

    PubMed  CAS  Google Scholar 

  21. Soto-Quintana A, Nava A, Atencio F, Granadillo A, Fernandez V, Ocando D (2003) Diminished zinc plasma concentrations and alterations in the number of lymphocyte subpopulations in Down’s syndrome patients. Invest Clin 44(1):51–60

    PubMed  Google Scholar 

  22. Sandström B (1997) Bioavailability of zinc. Eur J Clin Nutr 51(Suppl 1):S17–S19

    PubMed  Google Scholar 

  23. Zhou JR, Erdman JW (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35(6):495–508

    Article  PubMed  CAS  Google Scholar 

  24. Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378–1383

    Google Scholar 

  25. Jackson MJ (1989) Physiology of zinc: general aspects. In: Mills CF (ed) Zinc in human biology. Springer, London, pp 323–333

    Google Scholar 

  26. Marques RC, Marrreiro DN (2006) Aspectos metabólicos e funcionais do zinco na síndrome de Down. Rev Nutr 19(4):501–510

    CAS  Google Scholar 

  27. Kanavin OJ, Aaseth J, Birketvedt GS (2000) Thyroid hypofunction in Down’s syndrome: is it related oxidative stress? Biol Trace Elem Res 78:35–42

    Article  PubMed  CAS  Google Scholar 

  28. Nishiyama S, Futagoishi-Suginohara Y, Matsukura M, Nakamura T, Higashi A, Shinohara M, Matsuda I (1994) Zinc supplementation alters thyroid hormone metabolism in disabled patients with zinc deficiency. J Am Coll Nutr 13:62–67

    PubMed  CAS  Google Scholar 

  29. Neve J, Sinet PM, Molle L, Nicole A (1983) Selenium, zinc and copper in Down’s syndrome (trisomy 21): blood levels and relations with glutatione peroxidase and superoxide dismutase. Clin Chim Acta 133:209–214 1

    Article  PubMed  CAS  Google Scholar 

  30. Purice M, Maximilian C, Duritriu I, Ioan D (1988) Zinc and copper in plasma and erythrocytes of Down’s children. Endocrinologie 26(2):113–117

    PubMed  CAS  Google Scholar 

  31. Muchová J, Sustrová M, Garaiová I, Liptaková A, Blazicek P, Kvasnicka P, Pueschel S (2001) Duracková. Influence of age on activities of antioxidant enzimes and lipid peroxidation products in erytrocytes and neotrophilis of Down syndrome patients. Free Radical Biol Med 31(4):499–508

    Article  Google Scholar 

  32. Lewis SM, Brain BJ, Bates I (2006) Eritrócitos. In: Hematologia Prática de Dacie e Lewis. Artmed, São Paulo, pp 45–46

  33. Gibson RS (1990) Assessment of trace-element status. In: Gibson RS (ed) Principles of nutritional assessment. Oxford Univ. Press, New York, cap. 24, pp 511–576

    Google Scholar 

  34. De La Torre R, Casado A, Lopez-Fernandez E, Carrasosa D, Ramirez V, Saez J (1996) Overxpression of copper–zinc superoxide dismutase in trisomy 21. Experientia 52(9):871–873

    Article  Google Scholar 

  35. Lee M, Hyun D, Jenner P, Halliwell B (2001) Effect of overxpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defenses: relevance to Down’s syndrome and familial amyotrophic lateral sclerosis. J Neurochem 76(4):957–965

    Article  PubMed  CAS  Google Scholar 

  36. Salnikow K, Gao M, Voiltkun V, Huang X, Costa M (1994) Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res 54(2):6407–6412

    PubMed  CAS  Google Scholar 

  37. Lima AS (2002) Estado nutricional relativo ao zinco em pacientes com sindrome de down [dissertação de mestrado]. Faculdade de Ciências Farmacêuticas, São Paulo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilina do Nascimento Marreiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, R.C., de Sousa, A.F., do Monte, S.J.H. et al. Zinc Nutritional Status in Adolescents with Down Syndrome. Biol Trace Elem Res 120, 11–18 (2007). https://doi.org/10.1007/s12011-007-0061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0061-5

Keywords

Navigation