Skip to main content

Advertisement

Log in

Urinary Fluoride Reference Values Determined by a Fluoride Ion Selective Electrode

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As fluoride has a very short half-life in the body and the major route for fluoride excretion is via the kidney, human exposure is best measured in urine, where the concentration is expected to be highest. The urinary fluoride concentrations of 167 healthy Japanese adults were determined by means of a fluoride ion selective electrode. When the results were corrected for a specific gravity ρ = 1.024 g cm−3, the histogram of urinary fluoride concentrations highly skewed toward low values with sharp peakedness (skewness = 1.56, kurtosis = 3.08). The normality of the log-transformed histogram (skewness = 0.12, kurtosis = 0.07) and the straight line on log-probability paper clearly showed a key feature of lognormal distribution of urinary fluoride. A geometric mean (GM) of 613.8 μg/l and 95% confidential interval (CI) of 241.0–1633.1 μg/l were established as reference values for urinary fluoride. The results presented in this study will be useful as guidelines for the biological monitoring of fluoride in normal subjects and individuals at risk of occupational or environmental fluoride exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Richards D (2006) Fluoride varnish should be part of caries prevention programmes. Evid Based Dent 7:65–66

    Article  PubMed  Google Scholar 

  2. Kleerekoper M (1998) The role of fluoride in the prevention of osteoporosis. Endocrinol Metab Clin N Am 27:441–452

    Article  CAS  Google Scholar 

  3. Bawaskar HS, Bawaskar PH (2006) Endemic fluorosis in an isolated village in western Maharashtra, India. Trop Doct 36:221–223

    Article  PubMed  CAS  Google Scholar 

  4. Ruan JP, Yang ZQ, Wang ZL, Astrom AN, Bardsen A, Bjorvatn K (2005) Dental fluorosis and dental caries in permanent teeth: rural schoolchildren in high-fluoride areas in the Shaanxi province, China. Acta Odontol Scand 63:258–265

    Article  PubMed  CAS  Google Scholar 

  5. Haimanot RT, Fekadu A, Bushra B (1987) Endemic fluorosis in the Ethiopian Rift Valley. Trop Geogr Med 39:209–217

    PubMed  CAS  Google Scholar 

  6. Edelman P (1986) Hydrofluoric acid burns. Occup Med 1:89–103

    PubMed  CAS  Google Scholar 

  7. Takase I, Kono K, Tamura A, Nishio H, Dote T, Suzuki K (2004) Fatality due to acute fluoride poisoning in the workplace. Leg Med 6:197–200

    Article  CAS  Google Scholar 

  8. World Health Organization (1994) Fluorides and oral health. Report of a WHO Expert Committee on Oral Health Status and Fluoride Use. WHO Technical Report Series no. 846, pp 1–37

  9. Food and Nutrition Board, National Research Council (1989) Recommended Dietary Allowances, 10th edn. National Academy Press, Washington, DC

    Google Scholar 

  10. Jost M, Rudaz G, Liechti B (1988) Biological monitoring of fluoride-exposed workers in Switzerland: development of the internal fluoride burden in the last 10 years. Soz Praventivmed 33:112–118

    Article  PubMed  CAS  Google Scholar 

  11. Kono K, Yoshida Y, Watanabe M, Orita Y, Dote T, Bessho Y (1993) Urine, serum and hair monitoring of hydrofluoric acid workers. Int Arch Occup Environ Health 65:S95–S98

    Article  PubMed  CAS  Google Scholar 

  12. Assefa G, Shifera G, Melaku Z, Haimanot RT (2004) Clinical and radiological prevalence of skeletal fluorosis among retired employees of Wonji-Shoa sugar estate in Ethiopia. East Afr Med J 81:638–640

    PubMed  CAS  Google Scholar 

  13. Hodge HC, Smith FA, Gedalia I (1970) Excretion of fluorides. In: Fluorides and Human Health, World Health Organization Monograph Series No. 59, WHO, Geneva, pp. 141–161

  14. Carlson C, Armstrong W, Singer L (1960) Distribution and excretion of radiofluoride in the human. Proc Soc Exp Biol Med 104:235–239

    PubMed  CAS  Google Scholar 

  15. Kuo HW, Chang WG, Huang YS, Lai JS (1999) Comparison of gas chromatographic and ion selective electrode methods for measuring fluoride in urine. Bull Environ Contam Toxicol 62:677–684

    Article  PubMed  CAS  Google Scholar 

  16. Gotjamanos T, Orton V (1998) Fluoride ion concentration in 40 per cent silver fluoride solutions determined by ion selective electrode and ion chromatography techniques. Aust Dent J 43:55–56

    PubMed  CAS  Google Scholar 

  17. Kondo T (1969) Application of fluoride electrode to analysis of environmental and biological samples. I. Comparison with colorimetric methods and application to water analysis. Nippon Eiseigaku Zasshi 24:448–453

    PubMed  CAS  Google Scholar 

  18. Yoshida Y, Toyota S, Kono K, Watanabe M, Iwasaki K, Kato I (1978) Fluoride ion levels in the biological fluids of electronic industrial workers. Bull Osaka Med Sch 24:56–67

    PubMed  CAS  Google Scholar 

  19. Yadav JP, Lata S (2003) Urinary fluoride levels and prevalence of dental fluorosis in children of Jhajjar District, Haryana. Indian J Med Sci 57:394–399

    PubMed  CAS  Google Scholar 

  20. Warpeha RA, Marthaler TM (1995) Urinary fluoride excretion in Jamaica in relation to fluoridated salt. Caries Res 29:35–41

    Article  PubMed  CAS  Google Scholar 

  21. Kono K, Yoshida Y, Yamagata H, Watanabe M, Shibuya Y, Doi K (1987) Urinary fluoride monitoring of industrial hydrofluoric acid exposure. Environ Res 42:415–420

    Article  PubMed  CAS  Google Scholar 

  22. Iguchi K, Usuda K, Kono K, Dote T, Nishiura H, Shimahara M, Tanaka Y (1999) Urinary lithium: distribution shape, reference values, and evaluation of exposure by inductively coupled plasma argon-emission spectrometry. J Anal Toxicol 23:17–23

    PubMed  CAS  Google Scholar 

  23. Usuda K, Kono K, Dote T, Miyata K, Nishiura H, Shimahara M, Sugimoto K (1998) Study on urine boron reference values of Japanese men: use of confidence intervals as an indicator of exposure to boron compounds. Sci Total Environ 220:45–53

    Article  PubMed  CAS  Google Scholar 

  24. Usuda K, Kono K, Hayashi S, Kawasaki T, Mitsui G, Shibutani T, Dote E, Adachi K, Fujihara M, Shimbo Y, Sun W, Lu B, Nakasuji K (2006) Determination of reference concentratios of strontium in urine by inductively coupled plasma atomic emission spectrometry. Environ Health Prev Med 11:11–16

    Article  CAS  Google Scholar 

  25. Levine L, Fahy JP (1945) Evaluation of urinary lead determinations, 1. The significance of specific gravity. J Ind Hyg Toxicol 27:217–223

    CAS  Google Scholar 

  26. Usuda K, Kono K, Dote T, Shimizu H, Tominaga M, Koizumi C, Nakase E, Toshina Y, Iwai J, Kawasaki T, Akashi M (2002) Log-normal distribution of the trace element data results from a mixture of stocahstic input and deterministic internal dynamics. Biol Trace Elem Res 86:45–54

    Article  PubMed  CAS  Google Scholar 

  27. Kiilunen M, Jarvisalo J, Makitie O, Aitio A (1987) Analysis, storage stability and reference values for urinary chromium and nickel. Int Arch Occup Environ Health 59:43–50

    Article  PubMed  CAS  Google Scholar 

  28. Yabu Y, Miyai K, Endo Y, Hata N, Iijima Y, Hayashizaki S, Fushimi R, Harada T, Nose O, Kobayashi A et al (1998) Urinary iodide excretion measured with an iodide-selective ion electrode: studies on normal subjects of varying ages and patients with thyroid diseases. Endocrinol Jpn 35:391–398

    Google Scholar 

  29. Sabbioni E, Minoia C, Ronchi A, Hansen BG, Pietra R, Balducci C (1994) Trace element reference values in tissues from inhabitants of the European Union. VIII. Thallium in the Italian population. Sci Total Environ 158:227–236

    Article  PubMed  CAS  Google Scholar 

  30. Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Kondo T, Sakurai S, Ji R, Liang C, Chen X, Hong Z, Cao S (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271:107–116

    Article  PubMed  CAS  Google Scholar 

  31. Massmann W (1981) Reference values of renal excretion of fluoride. J Clin Chem Clin Biochem 19:1039–1041

    PubMed  CAS  Google Scholar 

  32. Toyota S (1979) Fluorine content in the urine and in the serum of hydrofluoric acid workers as an index of health administration. Sangyo Igaku 21:335–348

    PubMed  CAS  Google Scholar 

  33. Foo LC, Chong YH (1975) Fluoride studies in Malaysia, Southeast Asian. J Trop Med Public Health 6:264–268

    CAS  Google Scholar 

  34. Singh B, Gaur S, Garg VK (2006) Fluoride in drinking water and human urine in Southern. Haryana, India. J Hazard Mater (Oct 11; Epub ahead of print)

  35. Irlweck K, Czitober H, Machata G (1979) Fluorine in the urine and bones of occupationally exposed workers and non-exposed men. Acta Med Austriaca 6:99–103

    PubMed  CAS  Google Scholar 

  36. Heintze SD, Bastos JR, Bastos R (1998) Urinary fluoride levels and prevalence of dental fluorosis in three Brazilian cities with different fluoride concentrations in the drinking water. Community Dent Oral Epidemiol 26:316–323

    Article  PubMed  CAS  Google Scholar 

  37. Porcar C, Bronsoms J, Lopez-Bonet E, Valles M (1998) Fluorosis, osteomalacia and pseudohyperparathyroidism in a patient with renal failure. Nephron 79:234–235

    Article  PubMed  CAS  Google Scholar 

  38. Usuda K, Kono K, Yoshida Y (1997) The effect of hemodialysis upon serum levels of fluoride. Nephron 75:175–178

    Article  PubMed  CAS  Google Scholar 

  39. Usuda K, Kono K, Watanabe T, Dote T, Shimizu H, Tominaga M, Koizumi C, Nishiura H, Goto E, Nakaya H, Arisue M, Fukutomi A (2002) Hemodialyzability of ionizable fluoride in hemodialysis session. Sci Total Environ 297:183–191

    Article  PubMed  CAS  Google Scholar 

  40. Asanami S, Tanabe Y, Koga H, Takaesu Y (1989) Fluoride contents in tea and Sakura-shrimp in relation to other inorganic constituents. Shikwa Gakuho 89:1407–1412

    PubMed  CAS  Google Scholar 

  41. Fein NJ, Cerklewski FL (2001) Fluoride content of foods made with mechanically separated chicken. J Agric Food Chem 49:4284–4286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuda, K., Kono, K., Shimbo, Y. et al. Urinary Fluoride Reference Values Determined by a Fluoride Ion Selective Electrode. Biol Trace Elem Res 119, 27–34 (2007). https://doi.org/10.1007/s12011-007-0044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0044-6

Keywords

Navigation