Skip to main content
Log in

Bioenergetic Investigation of Action of Lithium to Tetrahymena thermophila bF5 by Microcalorimetry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Microcalorimetry was employed to investigate the action of Li(I) to aquatic ecosystem from the point view of bioenergetics. Tetrahymena thermophila BF5 was chosen as the model organism. The power-time curves of T. thermophila BF5 growth metabolism in the absence and presence of Li(I) were obtained. The corresponding thermokinetic parameters were derived. The generation time was calculated as 592.3 min, which was consistent with the biomass values. Low concentration of Li(I) (1–20 mmol l−1) stimulated the growth of T. thermophila BF5, whereas the inhibition effect was observed in high concentration (30–100 mmol l−1). The value of IC50 was 52.8 mmol l−1. In the concentration range of 30–100 mmol l−1, the growth rate constants (k) and the maximum heat out power (P max) decrease with the concentration of Li(I), whereas the heat output (Q) increases slightly compared to the control. Other than the classic mechanism of inositol-phosphate cycle, the involvement of mitochondria mechanism was discussed and suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicholas JB (1999) Inorganic pharmacology of lithium Chem Rev 99:2659–2682

    Article  CAS  Google Scholar 

  2. Pilcher HR (2003) The ups and downs of lithium. Nature 425:118–120

    Article  PubMed  CAS  Google Scholar 

  3. Knijff EM, Ruwhof C, De Wit HJ, Kupka RW et al (2006) Monocyte-derived dendritic cells in bipolar disorder. Biol Psychiatry 59:317–326

    Article  PubMed  CAS  Google Scholar 

  4. Rybakowski JK (2000) Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry 33:159–164

    PubMed  CAS  Google Scholar 

  5. Kniff EM, Kupka RW, Ruwhof C, Breumis MN et al (2005) Evidence that the immunopathogenic mechanism of lithium-induced psoriasis differs from that of regular psoriasis. Bipolar Disord 7:388–389

    Article  Google Scholar 

  6. Liu YY, Pluijm G, Karperien M, Stokkel MPM et al (2006) lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: clinical and in vitro studies. Clin Endocrinol 64:617–624

    Article  CAS  Google Scholar 

  7. Beurel E, Kornprobst M, Eggelpoel MJB, Ruiz-Ruiz C et al (2004) GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res 300:354–364

    Article  PubMed  CAS  Google Scholar 

  8. Koong SS, Reynolds JC, Movius EG, Keenan AM et al (1999) Lithium as a potential adjuvant to I-131 therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab 84:912–916

    Article  PubMed  CAS  Google Scholar 

  9. Kszos LA, Stewart AJ (2003) Review of lithium in aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12:439–447

    Article  PubMed  CAS  Google Scholar 

  10. Kszos LA, Beauchamp JJ, Stewart AJ (2003) Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodium. Ecotoxicology 12:427–437

    Article  PubMed  CAS  Google Scholar 

  11. Lee SR, Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280:42744–42749

    Article  PubMed  CAS  Google Scholar 

  12. Dondero F, Cavaletto M, Ghezzi AR (2004) Biochemical characterization and quantitative gene expression analysis of the multi-stress inducible metallothionein from Tetrahymena thermophila. Protist 155:157–168

    Article  PubMed  CAS  Google Scholar 

  13. Eisen JA, Coyne RS, Wu M, Wu DY et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:1620–1642

    Article  CAS  Google Scholar 

  14. Moya CE, Jacobs RS (2006) Pseudopterosin A inhibits phagocytosis and alters intracellular calcium turnover in a pertussis toxin sensitive site in Tetrahymena thermophila. Comp Biochem Physiol Part C Toxicol Pharmacol 143:436–443

    Article  CAS  Google Scholar 

  15. Sullivan WJ, Naguleswaran A, Angel SO (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol 8:1850–1861

    Article  PubMed  CAS  Google Scholar 

  16. Power ME, Sotornik D, Pinheiro MDO, Dayeh VR, Butler BJ et al (2006) Development of a fluorescent multiwell assay for evaluating the capacity of the ciliated protozoan Tetrahymena for bacterivory in water samples. Water Qual Res J Can 41:307–315

    CAS  Google Scholar 

  17. Dayeh VR, Grominsky S, DeWitte-Orr SJ, Sotornik D (2005) Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwell filter plates to Tetrahymena. Res Microbiol 156:93–103

    Article  PubMed  CAS  Google Scholar 

  18. Wright JC, Westh P (2006) Water vapour absorption in the penicillate millipede Polyxenus lagurus (Diplopoda: Penicillata: Polyxenida): microcalorimetric analysis of uptake kinetics. J Exp Biol 209:2486–2494

    Article  PubMed  Google Scholar 

  19. Nunez-Regueira L, Rodriguez-Anon JA, Proupin-Castineiras J, Nunez-Fernandez O (2006) Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with eucalyptus in Galicia (NW Spain). Soil Biol Biochem 38:115–124

    Article  CAS  Google Scholar 

  20. Prado AGS, Airoldi C (2001) The effect of the herbicide diuron on soil microbial activity. Pest Manag Sci 57:640–644

    Article  PubMed  CAS  Google Scholar 

  21. Kaya A (2004) Characterization of clay particle surfaces for contaminant sorption in soil barriers using flow microcalorimetry. J Environ Eng 130:918–921

    Article  CAS  Google Scholar 

  22. Robert HC, Joseph JM, Show HD, Joan MA, John CT (2003) Clinical performance characteristics of a new photometric lithium assay: a multicenter study. Clin Chim Acta 327:157–164

    Article  Google Scholar 

  23. Camus M, Hennere G, Baron G, Peytavin G et al (2003) Comparison of lithium concentrations in red blood cells and plasma in samples collected for TDM, acute toxicity, or acute-on-chronic toxicity. Eur J Clin Pharmacol 59:583–587

    Article  PubMed  CAS  Google Scholar 

  24. Maria JD, Joseph F (1995) The effects of lithium chloride on pattern formation in Tetrahymena thermophila. Dev Biol 171:497–506

    Article  Google Scholar 

  25. Wadso L, Gomez F, Sjoholm I, Rocculic P (2004) Effect of tissue wounding on the results from calorimetric measurements of vegetable respiration. Thermochim Acta 422:89–93

    Article  CAS  Google Scholar 

  26. Zheng D, Li(I)u Y, Zhang Y, Chen XJ, Shen YF (2006) Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF5 during growth. Environ Toxicol Pharmacol 22:121–127

    Article  CAS  Google Scholar 

  27. Calabrese EJ (2005) Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicology. Toxicol Appl Pharmacol 204:1–8

    Article  PubMed  CAS  Google Scholar 

  28. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    Article  PubMed  CAS  Google Scholar 

  29. Phillip LW, Robert CJ, Stephen MR (2000) Principles of toxicology, 2nd ed. John Wiley & Sons, Inc., New York, p. 14

    Google Scholar 

  30. Schrauzer NG (2002) Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21:14–21

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No.30570015, 20472066 and 20373051), Science Fund for Creative Research Group (No.20621502 NSFC), Science Research Foundation of Chinese Ministry of Education (NO: [2006]8IRT0543), and Natural Science Foundation of Hubei Province (No.2005ABC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HR., Liu, Y., Qin, CQ. et al. Bioenergetic Investigation of Action of Lithium to Tetrahymena thermophila bF5 by Microcalorimetry. Biol Trace Elem Res 119, 60–67 (2007). https://doi.org/10.1007/s12011-007-0040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0040-x

Keywords

Navigation