Skip to main content
Log in

Fabrication of Multifunctional Nanocomposite Fiber Extracted from Sambucus nigra: Anti-nociceptive, Anti-inflammatory, Self-Cleaning, and UV Blocking

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This article describes how to extract chemical compounds from Sambucus nigra and make multifunctional nanofabric doping/undoping nano-zinc oxide particles using an electrospinning apparatus. The created sample was examined using field emission scanning electron microscope (FESEM), which revealed that the manufactured fibers have an approximate diameter of 35 nm. An elemental mapping study also demonstrated the excellent distribution of nano-ZnO over the surface of the nanocomposite. The anti-nociceptive effect of the samples was studied, and the results suggested that the presence of Sambucus nigra caused pain prevention, and this effect demonstrated the anti-nociceptive effect in the samples studied by tail-flick experiments. Additionally, the anti-inflammatory properties of the samples were tested and showed favorable data results. Meanwhile, the self-cleaning of the prepared nanocomposites was studied. The results show that nano-zinc oxide doping has a direct impact on improving self-cleaning properties. Furthermore, ultraviolet (UV) transmission analysis of the samples showed that the prepared nanocomposites had excellent UV-blocking properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Uddin, M. K., et al. (2021). Dyeing of cotton knit fabric with natural dyes extracted from java plum. AATCC Journal of Research, 8(6), 41–46.

    Article  CAS  Google Scholar 

  2. Nam, S., et al. (2021). Interior vs. exterior ıncorporation of silver nanoparticles in cotton fiber and washing durability. AATCC Journal of Research, 8(6), 1–12.

    Article  CAS  Google Scholar 

  3. Sawicka, K. M., & Gouma, P. (2006). Electrospun composite nanofibers for functional applications. Journal of Nanoparticle Research, 8(6), 769–781.

    Article  CAS  Google Scholar 

  4. Kambli, N., et al. (2016). Extraction of natural cellulosic fibers from cornhusk and its physico-chemical properties. Fibers and Polymers, 17(5), 687–694.

    Article  CAS  Google Scholar 

  5. Altınkaya, E. (2021). Development of multifunctional bio-based cotton composite. Tekstilvekonfeksiyon, 31(4), 264–273.

    Google Scholar 

  6. Ferreira, S. S., Silva, A. M., & Nunes, F. M. (2022). Sambucus nigra L. fruits and flowers: Chemical composition and related bioactivities. Food Reviews International, 38(6), 1237–1265.

    Article  CAS  Google Scholar 

  7. Uncini Manganelli, R. E., Zaccaro, L., & Tomei, P. E. (2005). Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. Journal of Ethnopharmacology, 98(3), 323–327.

    Article  CAS  Google Scholar 

  8. Mikulic-Petkovsek, M., et al. (2015). Traditional elderflower beverages: a rich source of phenolic compounds with high antioxidant activity. Journal of Agricultural and Food Chemistry, 63(5), 1477–1487.

    Article  CAS  PubMed  Google Scholar 

  9. Shokrzadeh, M., & Saravi, S. S. S. (2010). The chemistry, pharmacology and clinical properties of Sambucus ebulus: a review. Journal of Medicinal Plants Research, 4, 95–103.

    CAS  Google Scholar 

  10. Ho, G. T., Wangensteen, H., & Barsett, H. (2017). Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW 264.7 macrophages and dendritic cells. International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18030584

  11. Loizzo, M. R., et al. (2016). Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467–2474.

    Article  CAS  PubMed  Google Scholar 

  12. Przybylska-Balcerek, A., et al. (2021). Sambucus Nigra extracts–natural antioxidants and antimicrobial compounds. Molecules, 26. https://doi.org/10.3390/molecules26102910

  13. Şahin, S., et al. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules, 22. https://doi.org/10.3390/molecules22071056

  14. Xu, D.-P., et al. (2017). Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. International Journal of Molecular Sciences, 18(1), 96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaltsa, O., et al. (2020). A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules, 25. https://doi.org/10.3390/molecules25040921

  16. Ahmadiani, A., et al. (1998). Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. Journal of Ethnopharmacology, 61(3), 229–235.

    Article  CAS  PubMed  Google Scholar 

  17. Dayioglu, H., et al. (2015). The effect of dyeing properties of fixing agent and plasma treatment on silk fabric dyed with natural dye extract obtained from Sambucus ebulus L. Plant. Procedia-Social and Behavioral Sciences, 195, 1609–1617.

    Article  Google Scholar 

  18. Alamdari, S., et al. (2020). Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences, 10, 3620.

    Article  CAS  Google Scholar 

  19. Fazli-Abukheyli, R., Rahimi, M. R., & Ghaedi, M. (2019). Electrospinning coating of nanoporous anodic alumina for controlling the drug release: drug release study and modeling. Journal of Drug Delivery Science and Technology, 54, 101247.

    Article  CAS  Google Scholar 

  20. Gao, D., et al. (2017). Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Materials Research Bulletin, 89, 102–107.

    Article  CAS  Google Scholar 

  21. Gao, D., et al. (2018). Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: an enhanced and durable antibacterial agent. Carbohydrate Polymers, 200, 221–228.

    Article  CAS  PubMed  Google Scholar 

  22. Bekrani, M., Zohoori, S., & Davodiroknabadi, A. (2020). Producing multifunctional cotton fabrics using nano CeO doped with nano TiO and ZnO. Autex Research Journal, 20(1), 78–84.

    Article  CAS  Google Scholar 

  23. Zohoori, S., et al. (2017). Vibration electrospinning of polyamide-66/multiwall carbon nanotube nanocomposite: introducing electrically conductive, ultraviolet blocking and antibacterial properties. Polish Journal of Chemical Technology, 19(3), 56–60.

    Article  CAS  Google Scholar 

  24. Zohoori, S., Karimi, L., & Ayaziyazdi, S. (2014). A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. Journal of Industrial and Engineering Chemistry, 20(5), 2934–2938.

    Article  CAS  Google Scholar 

  25. Qin, X.-H., Wu, D.-Q., & Chu, C.-C. (2013). Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release. Journal of Nanoparticle Research, 15(1), 1395.

    Article  Google Scholar 

  26. Ahmed, A., et al. (2020). High-throughput fabrication of chitosan/poly(ethylene oxide) nanofibers by modified free surface electrospinning. Fibers and Polymers, 21(9), 1945–1955.

    Article  CAS  Google Scholar 

  27. Ali, A. U., Aslam, S., Niu, H., Qadır, M. B., Lin, T., & UlAleem, A. (2021). Influence of spinneret polarity in needleless electrospinning. Tekstilvekonfeksiyon, 31(1), 10–18.

    Google Scholar 

  28. Mirjalili, M., & Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, 6(3), 207–213.

    Article  CAS  Google Scholar 

  29. Kimmer, D., et al. (2009). Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. Journal of Applied Polymer Science, 111(6), 2711–2714.

    Article  CAS  Google Scholar 

  30. Huang, C.-K., et al. (2020). Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. International Journal of Biological Macromolecules, 152, 68–76.

    Article  CAS  PubMed  Google Scholar 

  31. Kooshamoghadam, N., et al. (2022). Enhancing physical properties of viscose by preparing viscose/keratin/nano ZnO composite fabric. Journal of Natural Fibers, 19(13), 4846–4853.

    Article  CAS  Google Scholar 

  32. Zohoori, S., Karimi, L., & Nazari, A. (2014). Photocatalytic self-cleaning synergism optimization of cotton fabric using nano SrTiO3 and nano TiO2. Fibres and Textiles in Eastern Europe, 22, 91–95.

    CAS  Google Scholar 

  33. Yamin, F., Naddafiun, F., & Zohoori, S. (2021). Electrospinning of eucalyptus cellulose nano fiber and ımproving ıts properties by doping nano materials. Journal of Natural Fibers, 19(2), 1–10. https://doi.org/10.1080/15440478.2021.1932675

  34. Asakereh, M., et al. (2022). Extracting hazelnut green shell cellulose and electrospinning nanofibers doped with gelatin/nano silver. Journal of Natural Fibers, 19(17), 15552–15562.

    Article  CAS  Google Scholar 

  35. X., et al. (2023). Anti-nociceptive and anti-inflammatory activities of visnagin in different nociceptive and ınflammatory mice models. Applied Biochemistry and Biotechnology.

  36. Lei, F., & Yan, Z. (2022). Antinociceptive and anti-inflammatory effect of corynoline in different nociceptive and ınflammatory experimental models. Applied Biochemistry and Biotechnology, 194(10), 4783–4799.

    Article  CAS  PubMed  Google Scholar 

  37. Hole, K., & Tjølsen, A. (2007). Tail flick test. Encyclopedia of pain. Springer, Berlin. https://doi.org/10.1007/978-3-540-29805-2_4375

  38. Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, 111(3), 544–547.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AD designed this study, SZ supervised the experimental work and revised the manuscript, RT analyzed the data, FM drafted the manuscript, SS performed the experiments, and RM and PZ helped in the purification and the characterization in the lab. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abolfazl Davodiroknabadi.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable in this study as all the figures are original to this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davodiroknabadi, A., Zohoori, S., Talebikatieklahijany, R. et al. Fabrication of Multifunctional Nanocomposite Fiber Extracted from Sambucus nigra: Anti-nociceptive, Anti-inflammatory, Self-Cleaning, and UV Blocking. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04967-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04967-7

Keywords

Navigation