Skip to main content
Log in

Onco-therapeutic Effect of Novel Triterpenoid Compound Oleanolic Acid Isolated and Characterized from the Methanolic Extract of Coldenia procumbens (Linn.)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

India is considered a hub for a wide range of phytochemicals due to its rich biodiversity, which indeed flourished with many folk medicines and treatments. Phytochemicals are secondary metabolites synthesized in plants to protect themselves from deteriorating environmental stress and defense against pathogens. In the present study, we aimed to explore the strong anticancer potential of the bioactive compound present in the leaf extract of Coldenia procumbens (L.). The bioactive compound oleanolic acid was first time reported in the plant and was successfully isolated, characterized with various spectroscopic analyses. The in vitro study results explored that oleanolic acid has shown a potent cytotoxic effect against human hepatocellular carcinoma cell lines with a low IC50 value (40.66μg/mL) and induced apoptotic cell death. Overall, the present findings clearly demonstrated that the natural triterpenoid compound oleanolic acid isolated from C. procumbens showed a potent cytotoxic effect against HepG2 cells and explored the strong anticancer potential against liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Mattiuzzi, C., & Lippi, G. (2019). Current cancer epidemiology. Journal of Epidemiology and Global Health, 9, 217–222. https://doi.org/10.2991/jegh.k.191008.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vogel, A., Meyer, T., Sapisochin, G., Salem, R., & Saborowski, A. (2022). Hepatocellular carcinoma. Lancet, 15, 1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4

    Article  Google Scholar 

  3. Jamloki, A., Bhattacharyya, M., Nautiyal, M. C., & Patni, B. (2021). Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production. Heliyon, 7, e07709. https://doi.org/10.1016/j.heliyon.2021.e07709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Almeida, M. M. A., Souza, C. D. S., Dourado, N. S., da Silva, A. B., Ferreira, R. S., David, J. M., David, J. P., Costa, M. F. D., da Silva, V. D. A., Butt, A. M., & Costa, S. L. (2020). Phytoestrogen agathisflavone ameliorates neuroinflammation-induced by LPS and IL-1β and protects neurons in cocultures of glia/neurons. Biomolecules, 10, 562. https://doi.org/10.3390/biom10040562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azuama, O. C., Ortiz, S., Quirós-Guerrero, L., Bouffartigues, E., Tortuel, D., Maillot, O., Feuilloley, M., Cornelis, P., Lesouhaitier, O., Grougnet, R., Boutefnouchet, S., Wolfender, J. L., Chevalier, S., & Tahrioui, A. (2020). Tackling Pseudomonas aeruginosa virulence by mulinane-like diterpenoids from Azorella atacamensis. Biomolecules, 10, 1626. https://doi.org/10.3390/biom10121626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaur Kohli, S., Bhardwaj, A., Bhardwaj, V., Sharma, A., Kalia, N., Landi, M., & Bhardwaj, R. (2020). Therapeutic potential of brassinosteroids in biomedical and clinical research. Biomolecules, 10, 572. https://doi.org/10.3390/biom10040572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hussain, H., Ali, I., Wang, D., Mamadalieva, N. Z., Hussain, W., Csuk, R., Loesche, A., Fischer, L., Staerk, D., Anam, S., Alzain, M. N., Mushtaq, M., Ul-Haq, Z., Ullah, R., Noman, O. M., Abbas, G., & Green, I. R. (2020). 4-Benzyloxylonchocarpin and muracatanes A-C from Ranunculus muricatus L. and their biological effects. Biomolecules, 17, 1562. https://doi.org/10.3390/biom10111562

    Article  CAS  Google Scholar 

  8. Fecker, R., Buda, V., Alexa, E., Avram, S., Pavel, I. Z., Muntean, D., Cocan, I., Watz, C., Minda, D., Dehelean, C. A., Soica, C., & Danciu, C. (2020). Phytochemical and biological screening of Oenothera biennis L. hydroalcoholic extract. Biomolecules, 10, 818. https://doi.org/10.3390/biom10060818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sinan, K. I., Chiavaroli, A., Orlando, G., Bene, K., Zengin, G., Cziáky, Z., Jeko, J., Mahomoodally, M. F., Picot-Allain, M. C. N., Menghini, L., Recinella, L., Brunetti, L., Leone, S., Ciferri, M. C., Di Simone, S., & Ferrante, C. (2020). Evaluation of pharmacological and phytochemical profiles Piptadeniastrum africanum (Hook.f.) Brenan stem bark extracts. Biomolecules, 10, 516. https://doi.org/10.3390/biom10040516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zimmermann, T., Drašar, P., Rimpelová, S., Christensen, S. B., Khripach, V. A., & Jurášek, M. (2020). Large scale conversion of trilobolide into the payload of mipsagargin: 8-O-(12-Aminododecanoyl)-8-O-debutanoylthapsigargin. Biomolecules, 10, 1640. https://doi.org/10.3390/biom10121640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fursenco, C., Calalb, T., Uncu, L., Dinu, M., & Ancuceanu, R. (2020). Solidago virgaurea L.: A review of its ethnomedicinal uses, phytochemistry, and pharmacological activities. Biomolecules, 10, 1619. https://doi.org/10.3390/biom10121619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ainslie, W. (1826). Materia indica: Or, some account of those articles which are employed (by) the Hindoos, and other Eastern nations, in their medicine, arts, and agriculture. Comprising also formulae, with practical observations. Nabu Press PP. 650. ISBN-13: 978-1272895006.

    Google Scholar 

  13. Lather, A., Gupta, V., Garg, S., Singh, A., & Sachdeva, K. (2011). Pharmacological potential of the plants used in treatment of piles – A review. Journal of Natura Conscientia, 2, 136 ISSN 0976 – 044X.

    Google Scholar 

  14. Bhat, R. B., Adeloye, A. A., & Etejere, E. (1985). Screening of tropical medicinal plants. Journal of Economic Botany, 8, 164.

    Google Scholar 

  15. Sudarsanam, G., & Prasod, G. S. (1995). Medical ethnobotany of plants used antidote by Yanadi tribes in South India. Journal of Herbs Spices & Medicinal Plants, 3, 57–66. https://doi.org/10.1300/J044v03n01_07

    Article  Google Scholar 

  16. Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33, 179–189. https://doi.org/10.1590/s0100-879x2000000200004

    Article  CAS  PubMed  Google Scholar 

  17. Harborne, J. B. (1998). Textbook of phytochemical methods. A guide to modern techniques of plant analysis (5th ed., pp. 21–72). Chapman and Hall Ltd.

    Google Scholar 

  18. Raaman, N. (2006). Phytochemical technique (p. 320). New Indian Publishing Agencies ISBN:9788189422301.

    Book  Google Scholar 

  19. Gini, T. G., & Jeya Jothi, G. (2018). Column chromatography and HPLC analysis of phenolic compounds in the fractions of Salvinia molesta mitchell. Egyptian Journal of Basic and Applied Sciences, 5, 197–203. https://doi.org/10.1016/j.ejbas.2018.05.010

    Article  Google Scholar 

  20. Gogoi, J., Nakhuru, K. S., Policegoudra, R. S., Chattopadhyay, P., Rai, A. K., & Veer, V. (2015). Isolation and characterization of bioactive components from Mirabilis jalapa L. radix. Journal of Traditional and Complementary Medicine, 6, 41. https://doi.org/10.1016/j.jtcme

    Article  PubMed  PubMed Central  Google Scholar 

  21. McLafferty, F. W., Stauffer, D. A., & Loh, S. Y. (1999). Unknown identification using reference mass spectra. Quality evaluation of databases. Journal of the American Society for Mass Spectrometry, 10, 1229. https://doi.org/10.1016/S1044-0305(99)00104-X

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5, 536–549. https://doi.org/10.1038/nprot.2009.237

    Article  CAS  PubMed  Google Scholar 

  23. Heyman, H. M., & Meyer, J. J. M. (2012). NMR-based metabolomics as a quality control tool for herbal products. South African Journal of Botany, 82, 21–32. https://doi.org/10.1016/j.sajb.2012.04.001

    Article  CAS  Google Scholar 

  24. Blanchard, B. G., Faustin, K. A., Thierry, Y. A., Mathias, A. K., Félix, T., & Félix, T. Z. (2018). 13C NMR Analysis: Terpenoids, steroids and carotenoid from Diospyros soubreana (Ebenaceae). European Journal of Medicinal Plants, 26, 1–7. https://doi.org/10.9734/EJMP/2018/45230

    Article  Google Scholar 

  25. Pakkirisamy, M., Kalakandan, S. K., & Ravichandran, K. (2017). Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Turmeric). Pharmacognosy Journal, 9, 952–956.

    Article  CAS  Google Scholar 

  26. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  27. Liu, K., Liu, P. C., Liu, R., & Wu, X. (2015). Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Medical Science Monitor Basic Research, 21, 15–20. https://doi.org/10.12659/MSMBR.893327

    Article  PubMed  PubMed Central  Google Scholar 

  28. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalinina, T. S., Bannova, A. V., & Dygalo, N. N. (2002). Quantitative evaluation of DNA fragmentation. Bulletin of Experimental Biology and Medicine, 134, 554–556. https://doi.org/10.1023/a:1022957011153

    Article  CAS  PubMed  Google Scholar 

  30. Davies, D. (2015). Flow cytometric analysis of cell cycle with propidium iodide DNA staining (p. 1). FACS Laboratory, London Research Institute, Cancer Research UK.

    Google Scholar 

  31. Tayarani-Najaran, Z., Amiri, A., Karimi, G., Emami, S. A., Asili, J., & Mousavi, S. H. (2014). Comparative studies of cytotoxic and apoptotic properties of different extracts and the essential oil of Lavandula angustifolia on malignant and normal cells. Nutrition and Cancer, 66, 424–434. https://doi.org/10.1080/01635581.2013.878736

    Article  PubMed  Google Scholar 

  32. Hossain, M. A., & Ismail, Z. (2013). Isolation and characterization of triterpenes from the leaves of Orthosiphon stamineus. Arabian Journal of Chemistry, 6, 295–298. https://doi.org/10.1016/j.arabjc.2010.10.009

    Article  CAS  Google Scholar 

  33. Niranjan Kumar, A., Satya Srinivas, K. V. N., Kotesh Kumar, J., & Sastry, K. P. (2013). Rare cyano glucosides from Coldenia procumbens Linn. Journal of Chemical and Pharmaceutical Research, 5, 1394–1397.

    Google Scholar 

  34. Rethinam, G., & Venkatanarasimhan, M. (2020). Identification of bioactive constituents in Coldenia procumbens L. and its antidiabetic activity against streptozotocin induced Wistar albino rats. Journal of Complementary and Integrative Medicine. https://doi.org/10.1515/jcim-2019-0085

  35. Ahuchaogu, A. A., Otuokere, I. E., Ukaogo, P., & Ogbuehi, G. (2020). Gas chromatography mass spectrometry and Fourier transform infrared spectroscopy analysis of methanolic extract of Mimosa pudica L. leaves. Journal of Drugs and Pharmaceutical Science, 4, 1–9. https://doi.org/10.31248/JDPS2020.031

    Article  Google Scholar 

  36. Lúcio, K. A., Rocha Gda, G., Monção-Ribeiro, L. C., Fernandes, J., Takiya, C. M., & Gattass, C. R. (2011). Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS One, 6, e28596. https://doi.org/10.1371/journal.pone.0028596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berend, S., Vrdoljak, A. L., Radić, B., & Kuca, K. (2008). New bispyridinium oximes: In vitro and in vivo evaluation of their biological efficiency in soman and tabun poisoning. Chemico-Biological Interactions, 175, 413. https://doi.org/10.1016/j.cbi.2008.04.031

    Article  CAS  PubMed  Google Scholar 

  38. Žiberna, L., Šamec, D., Mocan, A., Nabavi, S. F., Bishayee, A., Farooqi, A. A., Sureda, A., & Nabavi, S. M. (2017). Oleanolic acid alters multiple cell signaling pathways: Implication in cancer prevention and therapy. International Journal of Molecular Sciences, 18, 643. https://doi.org/10.3390/ijms18030643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamanoi, F., & Bathaie, S. Z. (2014). Natural products and cancer signaling: Isoprenoids, polyphenols and flavonoids. Academic Press Ed 1: ISBN 978-0128022153.

    Google Scholar 

  40. Zakaria, K. N., Amid, A., Zakaria, Z., Jamal, P., & Ismail, A. (2019). Anti-proliferative activity of triterpenes isolated from Clinicanthus nutans on Hep-G2 liver cancer cells. Asian Pacific Journal of Cancer Prevention, 20, 563–567. https://doi.org/10.31557/APJCP.2019.20.2.563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soledad, C. T., Paola, H. C., Carlos Enrique, O. V., Israel, R. I., GuadalupeVirginia, N. M., & Raúl, A. S. (2021). Avocado seeds (Persea americana cv. Criollo sp.): Lipophilic compounds profile and biological activities. Saudi Journal of Biological Sciences, 28, 384–3390. https://doi.org/10.1016/j.sjbs.2021.02.087

    Article  CAS  Google Scholar 

  42. Lezaja, A., & Altmeyer, M. (2018). Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle, 17, 24–32. https://doi.org/10.1080/15384101.2017.1383578

    Article  CAS  PubMed  Google Scholar 

  43. Pauklin, S., Kristjuhan, A., Maimets, T., & Jaks, V. (2005). ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochemical and Biophysical Research Communications, 334, 386–394. https://doi.org/10.1016/j.bbrc.2005.06.097

    Article  CAS  PubMed  Google Scholar 

  44. Liu, J., He, Y., Zhang, D., Cai, Y., Zhang, C., Zhang, P., Zhu, H., Xu, N., & Liang, S. (2017). In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Molecular Medicine Reports, 16, 2595–2603. https://doi.org/10.3892/mmr.2017.6879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sathish Kumar, P., Viswanathan, M. B. G., Venkatesan, M., & Balakrishna, K. (2017). Bauerenol, a triterpenoid from Indian Suregada angustifolia: Induces reactive oxygen species-mediated P38MAPK activation and apoptosis in human hepatocellular carcinoma (HepG2) cells. Tumour Biology, 39, 1010428317698387. https://doi.org/10.1177/1010428317698387

    Article  CAS  PubMed  Google Scholar 

  46. Samarakoon, S. R., Ediriweera, M. K., Nwokwu, C. D. U., Bandara, C. J., Tennekoon, K. H., Piyathilaka, P., Karunaratne, D. N., & Karunaratne, V. (2017). A study on cytotoxic and apoptotic potential of a triterpenoid saponin (3-O-α-L-arabinosyl oleanolic acid) isolated from Schumacheria castaneifolia Vahl in human non-small-cell lung cancer (NCI-H292) cells. BioMed Research International, 9854083. https://doi.org/10.1155/2017/9854083

  47. Zakaria, N., Mahdzir, M. A., Yusoff, M., Mohd Arshad, N., Awang, K., & Nagoor, N. H. (2018). Cytotoxic effects of pinnatane A extracted from Walsura pinnata (Meliaceae) on human liver cancer cells. Molecules, 23, 2733. https://doi.org/10.3390/molecules23112733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Son, S. W., Yun, B. D., Song, M. G., Lee, J. K., Choi, S. Y., Kuh, H. J., & Park, J. K. (2021). The hypoxia-long noncoding RNA interaction in solid cancers. International Journal of Molecular Sciences, 22, 7261. https://doi.org/10.3390/ijms22147261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mingyuan, X., Qianqian, P., Shengquan, X., Chenyi, Y., Rui, L., Yichen, S., & Jinghong, X. (2017). Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget, 9, 3188–3197. https://doi.org/10.18632/oncotarget.23225

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

  • Our sincere gratitude to the Head of the Department of Biotechnology, University of Madras, Guindy Campus, Chennai, for providing valuable suggestions and space to carry out my research.

  • Sincere thanks to Dr. S. Vinod Kanna, Department of Botany, and the Head, School of Science, Tamil Nadu Open University, to carry out my proceedings for the paper.

Author information

Authors and Affiliations

Authors

Contributions

Prof. S. Elumalai and Dr. R. Banupriya equally contributed for full research ideas, work, and development of the scientific paper. Dr. G.K. Saravanan helped for preliminary study in sample collection and characterization. Dr. P. Parthasarathi helped for the cell line studies.

Corresponding author

Correspondence to Elumalai Sanniyasi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLS 32 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, B., Sanniyasi, E., Govindasamy Kuppusamy, S. et al. Onco-therapeutic Effect of Novel Triterpenoid Compound Oleanolic Acid Isolated and Characterized from the Methanolic Extract of Coldenia procumbens (Linn.). Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04959-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04959-7

Keywords

Navigation