Skip to main content
Log in

Correlation of Differentially Expressed lncRNAs with Intestinal Flora Imbalance, Small Intestinal Permeability, and Glucose Uptake in T2DM Mice

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetes is a major global health concern. This study aimed to investigate the correlation between differentially expressed lncRNAs in mice with type 2 diabetes mellitus (T2DM) and alterations in the intestinal flora and intestinal pathology. A T2DM mouse model was constructed by feeding mice a high-fat diet. Serum fat metabolism-related indices and insulin levels were biochemically detected. Serum inflammatory factors (IL-1β, IL-6, TNF-α, IL-10) and endotoxin (LPS) were measured by ELISA. Histopathological changes in the small intestines of mice were observed by HE. The short-chain fatty acid (SCFA) content was analyzed using GC-MS. Analysis of altered intestinal flora in T2DM mice was performed using a 16sRNA sequencing assay. Differences in lncRNA expression profiles in small intestinal tissues were analyzed using RNA-seq assays. Spearman’s correlation analysis was used to correlate the expression of candidate lncRNAs with changes in differential gut flora. Spearman’s correlation analysis was used to analyze the correlation between the expression of candidate differentially expressed lncRNAs, small intestinal permeability, and glucose absorption. We found that serum levels of LPS, BUN, Scr, TC, TG, LDL-C, IL-1β, IL-6, and TNF-α were elevated and levels of HDL-C, insulin, and IL-10 were decreased in T2DM mice. The ileal enterochromes of T2DM mice were disorganized and broken, the number of enterochromes was reduced, the local epithelial cells were necrotic, and the plasma membrane layer was locally absent. In addition, the protein expression of ZO-1 and occludin was decreased, and the protein expression of SGLT-1 and GLUT-2 was elevated in the model group compared to the control group. The levels of Acetic acid, Propionic acid and Butyric acid were decreased and the levels of Isobutyric acid and Isovaleric acid were increased, the abundance of beneficial bacteria was decreased and the abundance of harmful bacteria was increased in the feces of T2DM mice. RNA-seq identified nine differentially expressed lncRNAs (LINC00675, Gm33838, Gm11655, LOC6613926, LOC6613788, LOC6613791, LOC6613795, Arhgap27os3, and A330023F24Rik). In addition, we found significant correlations between differentially expressed lncRNAs and a variety of intestinal flora, as well as between small intestinal permeability and glucose absorption. A significant correlation was observed between differentially expressed lncRNAs in the intestinal tissues of T2DM mice and intestinal flora imbalance, small intestinal permeability, and glucose absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study have been included in this article.

References

  1. Yang, Q., Vijayakumar, A., & Kahn, B. B. (2018). Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 19(10), 654–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. Lancet, 389(10085), 2239–2251.

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V., & Knight, R. (2018). Current understanding of the human microbiome. Nature Medicine, 24(4), 392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burcelin, R., Serino, M., Chabo, C., Blasco-Baque, V., & Amar, J. (2011). Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetologica, 48(4), 257–273.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., Zhao, G., Chen, Y., & Zhao, L. (2010). Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME Journal, 4(2), 232–241.

    Article  CAS  PubMed  Google Scholar 

  7. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J. M., Zhang, Z., Chen, H., Yang, R., Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S. D., Nielsen, R., Pedersen, O., Kristiansen, K., Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55-60

  8. Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., Nagler, C. R., Ismagilov, R. F., Mazmanian, S. K., & Hsiao, E. Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., Wang, T., Luo, L., Wang, C., Wang, T., & Zhao, B. (2019). Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & Pharmacotherapy, 117, 109138.

    Article  CAS  Google Scholar 

  10. Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine., 51, 102590.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harsch, I. A., Konturek, P. C. (2018). The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: New insights into “old” diseases. Medical Sciences (Basel), 6(2), 32.

  12. Yang, F., Chen, Y., Xue, Z., Lv, Y., Shen, L., Li, K., Zheng, P., Pan, P., Feng, T., Jin, L., & Yao, Y. (2020). High-throughput sequencing and exploration of the lncRNA-circRNA-miRNA-mRNA network in type 2 diabetes mellitus. BioMed Research International, 2020, 8162524.

    PubMed  PubMed Central  Google Scholar 

  13. Yang, Y. L., Xue, M., Jia, Y. J., Hu, F., Zheng, Z. J., Wang, L., Si, Z. K., & Xue, Y. M. (2020). Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway. Experimental & Molecular Medicine, 52(2), 266–280.

    Article  CAS  Google Scholar 

  14. Yu, C., Yang, K., Meng, X., Cao, B., & Wang, F. (2020). Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells. International Journal of Medical Sciences, 17(5), 591–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L., & Wang, Y. M. (2019). Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. Journal of the Chinese Medical Association, 82(9), 685–692.

    Article  PubMed  Google Scholar 

  16. Zhang, W., Zheng, J., Hu, X., & Chen, L. (2019). Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus. Endocrine, 65(3), 494–503.

    Article  CAS  PubMed  Google Scholar 

  17. Brunkwall, L., & Orho-Melander, M. (2017). The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: From current human evidence to future possibilities. Diabetologia, 60(6), 943–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bäckhed, F. (2012). Host responses to the human microbiome. Nutrition Reviews, 70(Suppl 1), S14-17.

    Article  PubMed  Google Scholar 

  19. Zhang, Q., & Hu, N. (2020). Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 5003–5014.

    Article  CAS  PubMed  Google Scholar 

  20. Candela, M., Biagi, E., Soverini, M., Consolandi, C., Quercia, S., Severgnini, M., Peano, C., Turroni, S., Rampelli, S., Pozzilli, P., Pianesi, M., Fallucca, F., & Brigidi, P. (2016). Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 116(1), 80–93.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., Chen, Y., & Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 8(8), e71108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lippert, K., Kedenko, L., Antonielli, L., Kedenko, I., Gemeier, C., Leitner, M., Kautzky-Willer, A., Paulweber, B., & Hackl, E. (2017). Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Beneficial Microbes, 8(4), 545–556.

    Article  CAS  PubMed  Google Scholar 

  23. Aw, W., & Fukuda, S. (2018). Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation, 9(1), 5–12.

    Article  PubMed  Google Scholar 

  24. Yan, F., Li, N., Shi, J., Li, H., Yue, Y., Jiao, W., Wang, N., Song, Y., Huo, G., & Li, B. (2019). Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food & Function, 10(9), 5804–5815.

    Article  CAS  Google Scholar 

  25. Qamar, H., Hussain, K., Soni, A., Khan, A., Hussain, T., Chénais, B. (2021). Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 26(1), 247.

  26. Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul. M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J,, Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., Loumaye, A., Hermans, M. P., Thissen, J. P., Belzer, C., de Vos W. M., Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1), 107-113

  27. Shen, Z., Zhu, C., Quan, Y., Yang, J., Yuan, W., Yang, Z., Wu, S., Luo, W., Tan, B., & Wang, X. (2018). Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. Journal of Gastroenterology and Hepatology, 33(10), 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  28. Rachdaoui, N. (2020). Insulin: The friend and the foe in the development of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(5), 1770.

  29. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L. ,…, Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, C. H. (2018). Microbiota or short-chain fatty acids: Which regulates diabetes? Cellular & Molecular Immunology, 15(2), 88–91.

    Article  CAS  Google Scholar 

  31. Puddu, A., Sanguineti, R., Montecucco, F., & Viviani, G. L. (2014). Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators of Inflammation, 2014, 162021.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lassenius, M. I., Pietiläinen, K. H., Kaartinen, K., Pussinen, P. J., Syrjänen, J., Forsblom, C., Pörsti, I., Rissanen, A., Kaprio, J., Mustonen, J., Groop, P. H., & Lehto, M. (2011). Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care, 34(8), 1809–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pussinen, P. J., Havulinna, A. S., Lehto, M., Sundvall, J., & Salomaa, V. (2011). Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care, 34(2), 392–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida, N., Emoto, T., Yamashita, T., Watanabe, H., Hayashi, T., Tabata, T., Hoshi, N., Hatano, N., Ozawa, G., Sasaki, N., Mizoguchi, T., Amin, H. Z., Hirota, Y., Ogawa, W., Yamada, T., & Hirata, K. I. (2018). Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 138(22), 2486–2498.

    Article  CAS  PubMed  Google Scholar 

  35. Ruan, Y., Lin, N., Ma, Q., Chen, R., Zhang, Z., Wen, W., Chen, H., & Sun, J. (2018). Circulating lncRNAs analysis in patients with type 2 diabetes reveals novel genes influencing glucose metabolism and islet β-cell function. Cellular Physiology and Biochemistry, 46(1), 335–350.

    Article  CAS  PubMed  Google Scholar 

  36. Li, L., Li, C., Lv, M., Hu, Q., Guo, L., & Xiong, D. (2020). Correlation between alterations of gut microbiota and miR-122-5p expression in patients with type 2 diabetes mellitus. Annals of Translational Medicine, 8(22), 1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by the Natural Science Foundation of China (grant no. 81500427) and the Angel Nutritech Nutrition Fund (AF2017002).

Author information

Authors and Affiliations

Authors

Contributions

Shufang-Xu prepared the manuscript and provided the experimental guidance. Guidance on writing experimental research papers was provided by Heng-Zhang and Hui-Zou. The experimental research and data collection were conducted by Zhitao-Chen, Ting-Jiang, and Mengjun-Huang.

Corresponding author

Correspondence to Shufang Xu.

Ethics declarations

Ethical Approval

The experiment was approved by the Animal Ethics Committee of Wuhan Myhalic Biotechnology Co., Ltd (HLK-20210621-001).

Consent to Participate

All authors participated in the study.

Consent for Publication

All authors agree to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (XLSX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhang, H., Zou, H. et al. Correlation of Differentially Expressed lncRNAs with Intestinal Flora Imbalance, Small Intestinal Permeability, and Glucose Uptake in T2DM Mice. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04935-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04935-1

Keywords

Navigation