Skip to main content
Log in

Mild γ-Butyrolactone/Water Pretreatment for Highly Efficient Sugar Production from Corn Stover

  • Short Communication
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, γ-butyrolactone/water (GBL/H2O) was explored as a mild, efficient, and cost-effective binary solvent pretreatment to enhance hydrolyzability of corn stover (CS). Key pretreatment parameters—reaction time, temperature, and H2SO4 concentration—were systematically investigated for their effects on the physicochemical properties of CS. Specifically, increased temperature and acid concentration significantly decreased cellulose crystallinity (from 1.39 for untreated CS to 1.04 for CS pretreated by GBL/H2O with 100 mM H2SO4 at 120 °C for 1 h) and promoted lignin removal (47.3% for CS pretreated by GBL/H2O with 150 mM H2SO4 at 120 °C for 1 h). Acknowledging the cellulase’s limited hydrolysis efficiency, a dual-enzyme scheme using a low cellulase dosage (10 FPU/g) supplemented with β-glucosidase or xylanase was tested, enhancing hydrolysis of CS pretreated under low temperature–long duration and high temperature–short duration conditions, respectively. Optimum sugar release was obtained from CS pretreated with GBL/H2O and 150 mM H2SO4 at 120 °C for 1 h, achieving 98% glucan and 82.3% xylan conversion, compared with 53.9% and 17% of glucan and xylan conversion from untreated CS. GBL/H2O pretreatment outperformed other binary systems in literature, achieving the highest sugar conversions with lower enzyme loading. These results highlight the potential of GBL/H2O pretreatment for efficient biomass conversion, contributing to the goals of the green economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303.

    Article  CAS  PubMed  Google Scholar 

  2. Ren, J., Liu, Y. L., Zhao, X. Y., & Cao, J. P. (2020). Methanation of syngas from biomass gasification: An overview. International Journal of Hydrogen Energy, 45(7), 4223–4243.

    Article  CAS  Google Scholar 

  3. Wang, B., Shen, X., Chen, S., Bai, Y., Yang, G., Zhu, J., Shu, B., & Xue, Z. (2018). Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: A comprehensive evaluation. Ecological Indicators, 93(January), 998–1004.

    Article  Google Scholar 

  4. Schmetz, Q., Teramura, H., Morita, K., Oshima, T., Richel, A., Ogino, C., & Kondo, A. (2019). Versatility of a dilute Acid/Butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, Monosaccharides and Cellulose in distinct phases. ACS Sustainable Chemistry and Engineering, 7(13), 11069–11079.

    Article  CAS  Google Scholar 

  5. Haldar, D., & Purkait, M. K. (2021). A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523.

    Article  CAS  PubMed  Google Scholar 

  6. Li, R., Zheng, Y., Zhao, X., Yong, Q., Meng, X., Ragauskas, A., & Huang, C. (2023). Recent advances in biomass pretreatment using biphasic solvent systems. Green Chemistry, 25(7), 2505–2523.

    Article  CAS  Google Scholar 

  7. Kalogiannis, K. G., Matsakas, L., Aspden, J., Lappas, A. A., Rova, U., & Christakopoulos, P. (2018). Acid assisted organosolv delignification of beechwood and pulp conversion towards high concentrated cellulosic ethanol via high gravity enzymatic hydrolysis and fermentation. Molecules, 23(7), 1–18.

    Article  Google Scholar 

  8. Sui, W., Liu, X., Sun, H., Li, C., Parvez, A. M., & Wang, G. (2021). Improved high-solid loading enzymatic hydrolysis of steam exploded corn stalk using rapid room temperature γ-valerolactone delignification. Industrial Crops and Products, 165(March), 113389.

    Article  CAS  Google Scholar 

  9. Ling, R., Wei, W., & Jin, Y. (2022). Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol–water to improve the cellulose enzymatic conversion. Bioresource Technology, 361(June), 127723.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, Y., Yu, Y., Lin, W., Jin, Y., Yong, Q., & Huang, C. (2021). Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. Bioresource Technology, 325(December 2020), 124691.

    Article  CAS  PubMed  Google Scholar 

  11. Yin, X., Cai, T., Liu, C., Ma, Y., Hu, J., Jiang, J., & Wang, K. (2022). A novel solvothermal biorefinery for production of lignocellulosic xylooligosaccharides, fermentable sugars and lignin nano-particles in biphasic system. Carbohydrate Polymers, 295(April), 119901.

    Article  CAS  PubMed  Google Scholar 

  12. Li, S. X., Li, M. F., Bian, J., Sun, S. N., Peng, F., & Xue, Z. M. (2017). Biphasic 2-methyltetrahydrofuran/oxalic acid/water pretreatment to enhance cellulose enzymatic hydrolysis and lignin valorization. Bioresource Technology, 243, 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, S., Yang, X., Meng, X., & Wang, L. (2022). Efficient pretreatment using dimethyl isosorbide as a biobased solvent for potential complete biomass valorization. Green Chemistry, 24(10), 4082–4094.

    Article  CAS  Google Scholar 

  14. Raj, T., Chandrasekhar, K., Banu, R., Yoon, J. J., Kumar, G., & Kim, S. H. (2021). Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel, 303(June), 121333.

    Article  CAS  Google Scholar 

  15. Meng, X., Pu, Y., Li, M., & Ragauskas, A. J. (2020). A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chemistry, 22(9), 2862–2872.

    Article  CAS  Google Scholar 

  16. Corti, A., Torrens, E., & Montané, D. (2023). Acid-catalyzed fractionation of almond shells in γ-valerolactone/water. Biomass Conversion and Biorefinery, 13(4), 2729–2743.

    Article  CAS  Google Scholar 

  17. Jia, L., Qin, Y., Wang, J., & Zhang, J. (2020). Lignin extracted by γ-valerolactone/water from corn stover improves cellulose enzymatic hydrolysis. Bioresource Technology, 302(3), 122901.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, H., Liu, X., Li, J., Jiang, Z., & Hu, C. (2018). Performances of several solvents on the cleavage of Inter- and Intramolecular Linkages of Lignin in Corncob Residue. ChemSusChem, 11(9), 1494–1504.

    Article  CAS  PubMed  Google Scholar 

  19. Luo, Y., Wei, M., Jiang, B., Zhang, M., Miao, Q., Fu, H., Clark, Y., & Fan, J. (2022). A hemicellulose and lignin-first process for corn stover valorization catalyzed by aluminum sulfate in γ-butyrolactone/water co-solvent. Green Chemistry, 24(19), 7429–7441.

    Article  CAS  Google Scholar 

  20. Wang, W., Zhou, H., Guan, Q., Shen, L., He, L., Miao, R., Xu, X., & Wang, M. (2023). Two carriages for efficient furfural production from biomass: Rational design of porous biochar catalyst and clever utilization of butyrolactone-water medium. Fuel, 333(October 2022), 126389.

    Article  CAS  Google Scholar 

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in Biomass. National Renewable Energy Laboratory, (April 2008), 17.

  22. Jia, L., Qin, Y., Wen, P., Zhang, T., & Zhang, J. (2019). Alkaline post-incubation improves cellulose hydrolysis after Γ-valerolactone/water pretreatment. Bioresource Technology, 278(3), 440–443.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, F., Shi, Y. C., & Wang, D. (2013). X-ray scattering studies of lignocellulosic biomass: A review. Carbohydrate Polymers, 94(2), 904–917.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, H., Li, X., Zhang, W., Sun, D., Jiang, J., & Liu, Z. (2015). Hydrophilic pretreatment of furfural residues to improve enzymatic hydrolysis. Cellulose, 22(3), 1675–1686.

    Article  CAS  Google Scholar 

  25. Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for determination of reducing Sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  26. Huang, C., Ma, J., Liang, C., Li, X., & Yong, Q. (2018). Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues. Bioresource Technology, 263(March), 17–24.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, F., Shi, W., Sun, W., Li, X., Wang, F., Zhao, J., & Qu, Y. (2014). Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnology for Biofuels, 7(1), 38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mou, H. Y., Heikkilä, E., & Fardim, P. (2013). Topochemistry of alkaline, alkaline-peroxide and hydrotropic pretreatments of common reed to enhance enzymatic hydrolysis efficiency. Bioresource Technology, 150, 36–41.

    Article  CAS  PubMed  Google Scholar 

  29. Du, J., Liang, J., Zhang, X., Wang, J., Li, W., Song, P., & Feng, X. (2022). Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover. Bioresource Technology, 343(September 2021), 126113.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J., Tang, M., & Viikari, L. (2012). Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresource Technology, 121, 8–12.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, J., Yao, F., & Hu, C. (2022). Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technology, 358(April), 127428.

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. J., Cao, X. F., Sun, S. N., Yuan, T. Q., Wen, J. L., Wang, X. L., Xiao, L. P., & Sun, R. C. (2020). An integrated biorefinery process to comprehensively utilize corn stalk in a MIBK/water/Al(NO3)3·9H2O biphasic system: Chemical and morphological changes. Industrial Crops and Products, 147(October 2019), 112173.

  33. Park, Y. C., Kim, J. S., & Kim, T. H. (2018). Pretreatment of corn stover using organosolv with hydrogen peroxide for effective enzymatic saccharification. Energies, 11(5), 1–10.

    Article  CAS  Google Scholar 

  34. Zhan, Q., Lin, Q., Wu, Y., Liu, Y., Wang, X., & Ren, J. (2023). A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization. Bioresource Technology, 376(February), 128887.

    Article  CAS  PubMed  Google Scholar 

  35. Ziaei-Rad, Z., Fooladi, J., Pazouki, M., & Gummadi, S. N. (2021). Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: An economically viable method for wheat straw fractionation. Biomass and Bioenergy, 151(June), 106140.

    Article  CAS  Google Scholar 

  36. Panakkal, E. J., Cheenkachorn, K., Chuetor, S., Tantayotai, P., Raina, N., Cheng, Y. S., & Sriariyanun, M. (2022). Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustainable Energy Technologies and Assessments, 54(November), 102856.

    Article  Google Scholar 

  37. Zhang, Q., Tan, X., Wang, W., Yu, Q., Chen, X., Miao, C., Guo, Y., Zhang, Y., Zhuang, X., Sun, Y., Kong, X., & Yuan, Z. (2020). A Novel Recyclable Alkaline Biphasic 2-Phenoxyethanol/Water system for Rice Straw Biorefinery under mild conditions. ACS Sustainable Chemistry and Engineering, 8(20), 7649–7655.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation Youth Project with the approval number (No. 32201505). Supported by Natural Science Basic Research Project of Shaanxi Province with the approval number (Program No. 2022JM-119). Supported by Forestry Science and Technology Innovation Project of Shaanxi Province with the approval number of SXLK2022-02-4.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology and validation were performed by Yu Yang, Long Li and Lili Jia. Material preparation and data collection were performed by Yu Yang, Xueliang Ma, Manzhu Wang, Xinyi Ji, Ziyu Liu, Jiangyao Wang and Yujin Ren. Data analysis was performed Yu Yang, Xueliang Ma, Manzhu Wang, Xinyi Ji and Lili Jia. The first draft of the manuscript was written by Yu Yang and Lili Jia. Drafted the work was performed by Lili Jia and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lili Jia.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, X., Wang, M. et al. Mild γ-Butyrolactone/Water Pretreatment for Highly Efficient Sugar Production from Corn Stover. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04922-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04922-6

Keywords

Navigation