Skip to main content
Log in

FOXO3 Inhibits the Cisplatin Resistance and Progression of Melanoma Cells by Promoting CDKN1C Transcription

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Background

Forkhead box O3 (FOXO3) and cyclin dependent kinase inhibitor 1 C Gene (CDKN1C) have been shown to be involved in the melanoma process, but their roles in the cisplatin (DDP) resistance of melanoma remain unclear.

Methods

The mRNA levels of CDKN1C and FOXO3 were measured using quantitative real-time PCR. The protein levels of CDKN1C, FOXO3 and mitochondrial oxidative phosphorylation (mtOXPHOS)-related markers were determinant by western blot analysis. The DDP resistance, proliferation, and apoptosis of melanoma cells were assessed by cell counting kit 8 assay, colony formation assay and flow cytometry. Glucose consumption, lactate production and ATP level were detected to assess glycolysis. The regulation of FOXO3 on CDKN1C was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to evaluate the effect of FOXO3 on DDP sensitivity in melanoma tumor tissues.

Results

CDKN1C and FOXO3 were downregulated in chemoresistant melanoma tissues, and their low expression levels were related to the poor prognosis of melanoma patients. Overexpression of CDKN1C and FOXO3 repressed DDP resistance, proliferation, and glycolysis, while promoted apoptosis and mtOXPHOS in DDP-resistant melanoma cells. Further analysis suggested that FOXO3 could bind to CDKN1C promoter region to enhance its transcription. Besides, CDKN1C knockdown reversed the regulation of FOXO3 on melanoma cell DDP resistance and progression. Moreover, FOXO3 overexpression enhanced the DDP sensitivity of melanoma tumor tissues in vivo.

Conclusion

FOXO3 promoted the transcription of CDKN1C, thereby inhibiting the DDP resistance and progression of melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ding, L., Gosh, A., Lee, D. J., Emri, G., Huss, W. J., Bogner, P. N., et al. (2022). Prognostic biomarkers of cutaneous melanoma. Photodermatology, Photoimmunology and Photomedicine, 38, 418–434.

    Article  CAS  PubMed  Google Scholar 

  2. Ribeiro Moura Brasil Arnaut, J., Dos Santos Guimaraes, I., Evangelista Dos Santos, A. C., de Moraes Lino da Silva, F., Machado, J. R., & de Melo, A. C. (2021). Molecular landscape of Hereditary Melanoma. Critical Reviews in Oncology Hematology, 164, 103425.

    Article  PubMed  Google Scholar 

  3. Ahmed, B., Qadir, M. I., & Ghafoor, S. (2020). Malignant melanoma: Skin Cancer-diagnosis, Prevention, and treatment. Critical Reviews in Eukaryotic Gene Expression, 30, 291–297.

    Article  PubMed  Google Scholar 

  4. Teixido, C., Castillo, P., Martinez-Vila, C., Arance, A., & Alos, L. (2021). Molecular markers and targets in Melanoma. Cells ; 10.

  5. Eddy, K., & Chen, S. (2020). Overcoming Immune Evasion in Melanoma. International Journal of Molecular Sciences ; 21.

  6. Liu, Y., Ao, X., Wang, Y., Li, X., & Wang, J. (2022). Long non-coding RNA in gastric Cancer: Mechanisms and clinical implications for Drug Resistance. Frontiers in Oncology, 12, 841411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, X., Ao, X., Jia, Z., Li, Y., Kuang, S., Du, C., et al. (2022). Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Frontiers in Oncology, 12, 951864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qi, L., Luo, Q., Zhang, Y., Jia, F., Zhao, Y., & Wang, F. (2019). Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chemical Research in Toxicology, 32, 1469–1486.

    Article  CAS  PubMed  Google Scholar 

  9. Fuertes, M. A., Castilla, J., Alonso, C., & Perez, J. M. (2003). Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Current Medicinal Chemistry, 10, 257–266.

    Article  CAS  PubMed  Google Scholar 

  10. Mohapatra, P., Mohanty, S., Ansari, S. A., Shriwas, O., Ghosh, A., Rath, R., et al. (2022). CMTM6 attenuates cisplatin-induced cell death in OSCC by regulating AKT/c-Myc-driven ribosome biogenesis. The Faseb Journal, 36, e22566.

    Article  CAS  PubMed  Google Scholar 

  11. Moltgen, S., Piumatti, E., Massafra, G. M., Metzger, S., Jaehde, U., & Kalayda, G. V. (2020). Cisplatin Protein Binding Partners and their relevance for Platinum Drug Sensitivity. Cells ; 9.

  12. Gong, Q., Yu, H., Ding, G., Ma, J., Wang, Y., & Cheng, X. (2022). Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. European Journal of Pharmacology, 916, 174726.

    Article  CAS  PubMed  Google Scholar 

  13. Grossman, D., & Altieri, D. C. (2001). Drug resistance in melanoma: Mechanisms, apoptosis, and new potential therapeutic targets. Cancer and Metastasis Reviews, 20, 3–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lai, J., Lin, X., Cao, F., Mok, H., Chen, B., & Liao, N. (2021). CDKN1C as a prognostic biomarker correlated with immune infiltrates and therapeutic responses in breast cancer patients. Journal of Cellular and Molecular Medicine, 25, 9390–9401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suntharalingham, J. P., Ishida, M., Buonocore, F., Del Valle, I., Solanky, N., Demetriou, C., et al. (2019). Analysis of CDKN1C in fetal growth restriction and pregnancy loss. F1000Res, 8, 90.

    Article  PubMed  Google Scholar 

  16. Yang, C., Yan, Z., Hu, F., Wei, W., Sun, Z., & Xu, W. (2020). Silencing of microRNA-517a induces oxidative stress injury in melanoma cells via inactivation of the JNK signaling pathway by upregulating CDKN1C. Cancer Cell International, 20, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, W., Yan, Z., Hu, F., Wei, W., Yang, C., & Sun, Z. (2020). Long non-coding RNA GAS5 accelerates oxidative stress in melanoma cells by rescuing EZH2-mediated CDKN1C downregulation. Cancer Cell International, 20, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang, D., Feng, W., Zhuang, Y., Liu, J., Feng, Z., Xu, T., et al. (2021). Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. Mol Ther Nucleic Acids, 23, 1053–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartwig, J., Loebel, M., Steiner, S., Bauer, S., Karadeniz, Z., Roeger, C., et al. (2021). Metformin attenuates ROS via FOXO3 activation in Immune cells. Frontiers in Immunology, 12, 581799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Habrowska-Gorczynska, D. E., Koziel, M. J., Kowalska, K., & Piastowska-Ciesielska, A. W. (2021). FOXO3a and its regulators in prostate Cancer. International Journal of Molecular Sciences ; 22.

  21. Bernardo, V. S., Torres, F. F., & da Silva, D. G. H. (2023). FoxO3 and oxidative stress: A multifaceted role in cellular adaptation. J Mol Med (Berl), 101, 83–99.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y., Wang, Y., Li, X., Jia, Y., Wang, J., & Ao, X. (2022). FOXO3a in cancer drug resistance. Cancer Letters, 540, 215724.

    Article  CAS  PubMed  Google Scholar 

  23. Beretta, G. L., Corno, C., Zaffaroni, N., & Perego, P. (2019). Role of FoxO proteins in Cellular Response to Antitumor agents. Cancers (Basel) ; 11.

  24. Dong, Z., Yang, J., Li, L., Tan, L., Shi, P., Zhang, J., et al. (2020). FOXO3a–SIRT6 axis suppresses aerobic glycolysis in melanoma. International Journal of Oncology, 56, 728–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, X., Li, Z., Zhu, X., Zhan, M., Wu, C., Ding, X., et al. (2022). A coherent FOXO3-SNAI2 feed-forward loop in autophagy. Proc Natl Acad Sci U S A, 119, e2118285119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, H., Li, J., Hu, Y., Zhang, R., Gu, X., Wei, Y., et al. (2023). FOXO3 regulates Smad3 and Smad7 through SPON1 circular RNA to inhibit idiopathic pulmonary fibrosis. International Journal of Biological Sciences, 19, 3042–3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rashid, S., Shaughnessy, M., & Tsao, H. (2023). Melanoma classification and management in the era of molecular medicine. Dermatologic Clinics, 41, 49–63.

    Article  CAS  PubMed  Google Scholar 

  28. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. C Ca: A Cancer Journal for Clinicians, 70, 7–30.

    Google Scholar 

  29. Ge, L., Wu, Y., Wan, M., You, Y., Zhai, Z., & Song, Z. (2021). Metformin Increases Sensitivity of Melanoma Cells to Cisplatin by Blocking Exosomal-Mediated miR-34a Secretion. J Oncol ; 2021:5525231.

  30. Karwaciak, I., Salkowska, A., Karas, K., Dastych, J., & Ratajewski, M. (2021). Targeting SIRT2 sensitizes Melanoma cells to Cisplatin via an EGFR-Dependent mechanism. International Journal of Molecular Sciences ; 22.

  31. Kagiyama, Y., Fujita, S., Shima, Y., Yamagata, K., Katsumoto, T., Nakagawa, M., et al. (2021). CDKN1C-mediated growth inhibition by an EZH1/2 dual inhibitor overcomes resistance of mantle cell lymphoma to ibrutinib. Cancer Science, 112, 2314–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu, Z., Zhu, W., Meng, H., Tong, L., Li, X., Luo, P., et al. (2019). CDYL promotes the chemoresistance of small cell lung cancer by regulating H3K27 trimethylation at the CDKN1C promoter. Theranostics, 9, 4717–4729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Na, H., Li, X., Zhang, X., Xu, Y., Sun, Y., Cui, J., et al. (2020). lncRNA STEAP3-AS1 modulates cell cycle progression via affecting CDKN1C expression through STEAP3 in Colon cancer. Mol Ther Nucleic Acids, 21, 480–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hao, Y., Ren, Z., Yu, L., Zhu, G., Zhang, P., Zhu, J., et al. (2022). p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/beta-catenin axis. Aging Cell, 21, e13677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu, S., Yu, M., He, X., Wen, L., Bu, Z., & Feng, J. (2019). KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell, 18, e12940.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu, X., Zheng, H., Chan, M. T. V., & Wu, W. K. K. (2018). NOVA1 acts as an oncogene in melanoma via regulating FOXO3a expression. Journal of Cellular and Molecular Medicine, 22, 2622–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by 2021 Xiangyang City Research and Development Project (Medical and Health Technology Program) (2021YL08).

Author information

Authors and Affiliations

Authors

Contributions

Chao Yang and Zeqiang Yan designed and performed the research; Zhihua Sun, Fen Hu, Wei Xu analyzed the data; Chao Yang and Zeqiang Yan wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yan, Z., Sun, Z. et al. FOXO3 Inhibits the Cisplatin Resistance and Progression of Melanoma Cells by Promoting CDKN1C Transcription. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04909-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04909-3

Keywords

Navigation