Skip to main content

Advertisement

Log in

Inhibition of Integrin-Associated Kinases FAK and ILK on the In Vitro Model of Skin Wound Healing

  • Short Communication
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dermal fibroblasts are essential cells of skin tissue responsible for its normal functioning. In skin wounds, the differentiation of resident fibroblasts into myofibroblasts occurs, which is accompanied by the rearrangement of actin cytoskeleton with the expression of alpha-smooth muscle actin. This transformation is a prerequisite for a successful wound healing. At the same time, different studies indicate that extracellular matrix may be involved in regulation of this process. Since the connection between cells and matrix is provided by transmembrane integrin receptors, this work was aimed at studying the dynamics of signaling pathways associated with integrins on an in vitro model of wound healing using human skin fibroblasts. It was shown that the healing of simulated wound was accompanied by a change in the level of integrins as well as integrin-associated kinases ILK (integrin-linked kinase) and FAK (focal adhesion kinase). Pharmacological inhibition of ILK and FAK caused the suppression of p38 and Akt which proteins are involved in regulation of the actin cytoskeleton. Moreover, it resulted in an inefficient wound closure in vitro. The results of this study support the involvement of integrin-associated kinases in regulation of fibroblast-to-myofibroblast transition during wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data generated or analyzed during this study are included in this article.

Abbreviations

αSMA:

Alpha-smooth muscle actin

TGFβ1:

Transforming growth factor-beta1

ВКМ:

Extracellular matrix

ILK:

Integrin-linked kinase

FAK:

Focal adhesion kinase

Intβ1:

Integrin beta1

References

  1. Sorrell, J. M., & Caplan, A. I. (2004). Fibroblast heterogeneity: More than skin deep. Journal of Cell Science, 117(Pt 5), 667–675.

    Article  PubMed  CAS  Google Scholar 

  2. Marconi, I. M., Rivitti-Machado, M. C., Sotto, M. N., & Nico, M. M. (2009). Fibroblastic rheumatism. Clinical and Experimental Dermatology, 34(1), 29–32.

    Article  PubMed  CAS  Google Scholar 

  3. Błyszczuk, P., Kozlova, A., Guo, Z., Kania, G., & Distler, O. (2019). Experimental mouse model of bleomycin-induced skin fibrosis. Current Protocols in Immunology, 126(1), e88.

    Article  PubMed  Google Scholar 

  4. Showalter, K., & Gordon, J. K. (2021). Skin histology in systemic sclerosis: A relevant clinical biomarker. Current Rheumatology Reports, 23, 3.

    Article  CAS  Google Scholar 

  5. Sim, J. H., Shin, J., Vandersteen, D. P., & Kim, Y. C. (2011). Development of dermatomyofibroma in a male infant. Annals of Dermatology, 23, S7–S4.

    Article  Google Scholar 

  6. Pakshir, P., Noskovicova, N., Lodyga, M., Son, D. O., Schuster, R., Goodwin, A., Karvonen, H., & Hinz, B. (2020). The myofibroblast at a glance. Journal of Cell Science, 133(13), jcs227900.

    Article  PubMed  CAS  Google Scholar 

  7. Gabbiani, G. (2021). 50 years of myofibroblasts: How the myofibroblast concept evolved. Methods in Molecular Biology, 2299, 1–5.

    Article  PubMed  CAS  Google Scholar 

  8. Monika, P., Waiker, P. V., Chandraprabha, M. N., Rangarajan, A., & Murthy, K. N. C. (2021). Myofibroblast progeny in wound biology and wound healing studies. Wound Repair and Regeneration, 29(4), 531–547.

    Article  PubMed  Google Scholar 

  9. Hinz, B., Phan, S. H., Thannickal, V. J., Prunotto, M., Desmoulière, A., Varga, J., De Wever, O., Mareel, M., & Gabbiani, G. (2012). Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. American Journal of Pathology, 180(4), 1340–1355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hinz, B. (2016). The role of myofibroblasts in wound healing. Current Research in Translational Medicine, 64(4), 171–177.

    Article  PubMed  CAS  Google Scholar 

  11. Strauch, A. R., & Hariharan, S. (2013). Dynamic interplay of smooth muscle α-actin gene-regulatory proteins reflects the biological complexity of myofibroblast differentiation. Biology, 2(2), 555–586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hinz, B. (2010). The myofibroblast: paradigm for a mechanically active cell. Journal of Biomechanics, 43(1), 146–155.

    Article  PubMed  Google Scholar 

  13. Wipff, P. J., & Hinz, B. (2008). Integrins and the activation of latent transforming growth factor beta1 - An intimate relationship. European Journal of Cell Biology, 87(8–9), 601–615.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, S., Calderwood, D. A., & Ginsberg, M. H. (2000). Integrin cytoplasmic domain-binding proteins. Journal of Cell Science, 113, 3563–3571.

    Article  PubMed  CAS  Google Scholar 

  15. Katsumi, A., Orr, A. W., Tzima, E., & Schwartz, M. A. (2004). Integrins in mechanotransduction. Journal of Biological Chemistry, 279, 12001–12004.

    Article  PubMed  CAS  Google Scholar 

  16. Ko, K. S., & McCulloch, C. A. (2001). Intercellular mechanotransduction: Cellular circuits that coordinate tissue responses to mechanical loading. Biochemical and Biophysical Research Communications, 285, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, H., Kamm, R. D., & Lee, R. T. (2004). Cell mechanics and mechanotransduction: Pathways, probes, and physiology. American Journal of Physiology – Cell Physiology, 287, 1–11.

    Article  Google Scholar 

  18. Israeli-Rosenberg, S., Manso, A. M., Okada, H., & Ross, R. S. (2014). Integrins and integrin-associated proteins in the cardiac myocyte. Circulation Research, 114, 572–586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Petukhova, O. A., Turoverova, L. V., Kropacheva, I. V., & Pinaev, G. P. (2004). Morphology of epidermoid carcinoma A431 cells spread on immobilized ligands. Tsitologiia, 46, 5–15.

    PubMed  CAS  Google Scholar 

  20. Geisse, N. A., Sheehy, S. P., & Parker, K. K. (2009). Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cellular and Developmental Biology – Animal, 45, 343–350.

    Article  PubMed  Google Scholar 

  21. Bildjug, N. B., & Pinaev, G. P. (2014). Extracellular matrix dependence of organization of the cardiomyocyte contractile apparatus. Cell and Tissue Biology, 8, 38–49.

    Article  Google Scholar 

  22. Starke, J., & Wehrle-Haller, B. (2014). Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochemical Society Transactions, 42, 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  23. Bildyug, N., Bozhokina, E., & Khaitlina, S. (2016). Contribution of α-smooth muscle actin and extracellular matrix to the in vitro reorganization of cardiomyocyte contractile system. Cell Biology International, 40(4), 472–477.

    Article  PubMed  CAS  Google Scholar 

  24. Bildyug, N. (2019). Dynamics of integrin-linked kinase during the rearrangement of contractile apparatus in rat neonatal cardiomyocytes. FEBS Open Bio, 9, 197.

    Google Scholar 

  25. Bildyug, N. (2019). Redistribution of focal adhesion kinase in rat neonatal cardiomyocytes in culture. Journal of Muscle Research and Cell Motility (Special Issue: The European Muscle Conference 2019), 40, 244.

    Google Scholar 

  26. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, S., & Leask, A. (2013). Integrin β1 is required for dermal homeostasis. Journal of Investigative Dermatology, 133(4), 899–906.

    Article  PubMed  CAS  Google Scholar 

  28. Qian, Y., Zhong, X., Flynn, D. C., Zheng, J. Z., Qiao, M., Wu, C., Dedhar, S., Shi, X., & Jiang, B. H. (2005). ILK mediates actin filament rearrangements and cell migration and invasion through PI3K/Akt/Rac1 signaling. Oncogene, 24, 3154–3165.

    Article  PubMed  CAS  Google Scholar 

  29. Lal, H., Verma, S. K., Smith, M., Guleria, R. S., Lu, G., Foster, D. M., & Dostal, D. E. (2007). Stretch-induced MAP kinase activation in cardiac myocytes: Differential regulation through β1-integrin and focal adhesion kinase. Journal of Molecular and Cellular Cardiology, 43, 137–147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Smeeton, J., Zhang, X., Bulus, N., Mernaugh, G., Lange, A., Karner, C. M., Carroll, T. J., Fässler, R., Pozzi, A., Rosenblum, N. D., & Zent, R. (2010). Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development, 137(19), 3233–3243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li, G., Li, Y. Y., Sun, J. E., Lin, W. H., & Zhou, R. X. (2016). ILK-PI3K/AKT pathway participates in cutaneous wound contraction by regulating fibroblast migration and differentiation to myofibroblast. Laboratory Investigation, 96, 741–751.

    Article  PubMed  CAS  Google Scholar 

  32. Yue, G., Song, W., Xu, S., Sun, Y., & Wang, Z. (2019). Role of ILK/p38 pathway in mediating the enhanced osteogenic differentiation of bone marrow mesenchymal stem cells on amorphous carbon coating. Biomaterials Science, 7(3), 975–984.

    Article  PubMed  CAS  Google Scholar 

  33. Li, Y., Yuan, Y., Zhang, F., Guo, A., Cao, F., Song, M., Fu, Y., Xu, X., Shen, H., Zheng, S., Pan, Y., & Chang, W. (2021). Therapeutic suppression of FAK-AKT signaling overcomes resistance to SHP2 inhibition in colorectal carcinoma. Frontiers in Pharmacology, 12, 739501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhu, Y. G., Lv, Y. X., Guo, C. Y., Xiao, Z. M., Jiang, Q. G., Kuang, H., Zhang, W. H., & Hu, P. (2021). Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway. Life Sciences, 270, 119112.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, J., Zha, Y., Jiao, Y., Li, Y., Wang, J., & Zhang, S. (2022). OTUD7B (Cezanne) ameliorates fibrosis after myocardial infarction via FAK-ERK/P38 MAPK signaling pathway. Archives of Biochemistry and Biophysics, 724, 109266.

    Article  PubMed  CAS  Google Scholar 

  36. Yang, J., Hou, Y., Zhou, M., Wen, S., Zhou, J., Xu, L., Tang, X., Du, Y. E., Hu, P., & Liu, M. (2016). Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network. International Journal of Biochemistry and Cell Biology, 71, 62–71.

    Article  PubMed  CAS  Google Scholar 

  37. Niu, H., Lin, D., Tang, W., Ma, Y., Duan, B., Yuan, Y., & Liu, C. (2017). Surface topography regulates osteogenic differentiation of MSCs via crosstalk between FAK/MAPK and ILK/β-catenin pathways in a hierarchically porous environment. ACS Biomaterials Science & Engineering, 3(12), 3161–3175.

    Article  CAS  Google Scholar 

  38. Shi-Wen, X., Renzoni, E. A., Kennedy, L., Howat, S., Chen, Y., Pearson, J. D., Bou-Gharios, G., Dashwood, M. R., du Bois, R. M., Black, C. M., Denton, C. P., Abraham, D. J., & Leask, A. (2007). Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biology, 26(8), 625–632.

    Article  PubMed  Google Scholar 

  39. Mimura, Y., Ihn, H., Jinnin, M., Asano, Y., Yamane, K., & Tamaki, K. (2005). Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. Journal of Investigative Dermatology, 124(5), 886–892.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, J., Zohar, R., & McCulloch, C. A. (2006). Multiple roles of alpha-smooth muscle actin in mechanotransduction. Experimental Cell Reserch, 312, 205–214.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-773 and theme no. FMFU-2021-0008) and the Institute of Cytology (INC RAS) Director’s Fund.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design, experimentations, data collection and analysis, and manuscript preparation: Natalya Bildyug.

Corresponding author

Correspondence to Natalya Bildyug.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildyug, N. Inhibition of Integrin-Associated Kinases FAK and ILK on the In Vitro Model of Skin Wound Healing. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04842-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04842-x

Keywords

Navigation