Skip to main content
Log in

Cloning, Purification, and Biophysical Characterization of FemB Protein from Methicillin-Resistant Staphylococcus aureus and Inhibitors Screening

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus has emerged as a leading cause of nosocomial, community acquired infections worldwide. Earlier investigations revealed that mecA-encoded FEM proteins play a role in antimicrobial resistance by developing unique peptidoglycan cross-linking which helps in the formation of protective cell membrane. In view to this, present study focused on expression, purification FEM proteins, and FemB biophysical characterization with the aid of in silico and in vitro approaches. Furthermore, we carried out biological screening assays and identified the novel potent 1,2,3-triazole conjugated 1,3,4-oxadiazole hybrid molecule which could inhibit the MRSA than the proven oxacillin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All datasets generated for this study are included in the article. The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

FDA:

U.S. Food and Drug Administration

PDB:

Protein Data Bank

MRSA:

Methicillin-Resistant Staphylococcus aureus

FEM:

Factors Essential for Methicillin-resistance

References 

  1. Alam, M. M., Qais, F. A., Ahmad, I., Alam, P., Hasan Khan, R., & Naseem, I. (2018). Multispectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. Journal of Biomolecular Structure & Dynamics, 36, 795–809. https://doi.org/10.1080/07391102.2017.1298470

    Article  CAS  Google Scholar 

  2. Apweiler, Rolf, et al. (2004). UniProt the universal protein knowledgebase. Nucleic acids research, 32(suppl_1), 115–119. https://doi.org/10.1093/nar/gkh131

    Article  CAS  Google Scholar 

  3. Benson, T. E., et al. (2002). X-ray crystal structure of Staphylococcus aureus FemA. Structure, 10(8), 1107–1115. https://doi.org/10.1016/s0969-2126(02)00807-9

    Article  CAS  PubMed  Google Scholar 

  4. Berger-B¨achi, B., & Tschierske, M. (1998). Role of fem factors in methicillin resistance. Drug Resistance Updates, 1(5), 325–335. https://doi.org/10.1016/S1368-7646(98)80048-4

    Article  PubMed  Google Scholar 

  5. Berger-Bächi, B., Barberis-Maino, L., Strässle, A., & Kayser, F. H. (1989). FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: Molecular cloning and characterization. Molecular and General Genetics MGG, 219, 263–269. https://doi.org/10.1007/BF00261186

    Article  PubMed  Google Scholar 

  6. Nakanishi, K., Berova, N., et al. (1996). Circular dichroism: principles and applications. J. Nat. Prod. 59, 12, 1219. New York: VCh. https://doi.org/10.1021/np9604700

  7. Bitla, S., et al. (2020). Design and synthesis of triazole conjugated novel 2, 5-diaryl substituted 1, 3, 4-oxadiazoles as potential antimicrobial and anti-fungal agents. Journal of Molecular Structure, 1220, 128705. https://doi.org/10.1016/j.molstruc.2020.128705

    Article  CAS  Google Scholar 

  8. Bitla, S., et al. (2021). Design and synthesis, biological evaluation of bis-(1, 2, 3-and 1, 2, 4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorganic & Medicinal Chemistry Letters, 41, 128004. https://doi.org/10.1016/j.bmcl.2021.128004

    Article  CAS  Google Scholar 

  9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  10. Chen, C. Y., Nace, G. W., Irwin, P. L., et al. (2003). A 6 x 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. Journal of Microbiological Methods, 55, 475–479. https://doi.org/10.1016/S0167-7012(03)00194-5

    Article  CAS  PubMed  Google Scholar 

  11. Desai, N. C., et al. (2014). Synthesis and antimicrobial screening of 1, 3, 4-oxadiazole and clubbed thiophene derivatives. Journal of Saudi Chemical Society, 18(3), 255–261. https://doi.org/10.1016/j.jscs.2011.06.020

    Article  CAS  Google Scholar 

  12. Ehlert, K. E. R. S. T. I. N., Schröder, W., & Labischinski, H. A. R. A. L. D. (1997). Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. Journal of bacteriology, 179(23), 7573–7576. https://doi.org/10.1128/jb.179.23.7573-7576.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gadegoni, H., & Manda, S. (2013). Synthesis and screening of some novel substituted indoles contained 1, 3, 4-oxadiazole and 1, 2, 4-triazole moiety. Chinese chemical letters, 24(2), 127–130. https://doi.org/10.1016/j.cclet.2013.01.001

    Article  CAS  Google Scholar 

  14. Gilani, S. J., Khan, S. A., & Siddiqui, N. (2010). Synthesis and pharmacological evaluation of condensed heterocyclic 6-substituted 1, 2, 4-triazolo-[3, 4-b]-1, 3, 4-thiadiazole and 1, 3, 4-oxadiazole derivatives of isoniazid. Bioorganic & medicinal chemistry letters, 20(16), 4762–4765. https://doi.org/10.1016/j.bmcl.2010.06.125

    Article  CAS  Google Scholar 

  15. Gill, C., et al. (2008). Clubbed [1, 2, 3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorganic & Medicinal Chemistry Letters, 18(23), 6244–6247. https://doi.org/10.1016/j.bmcl.2008.09.096

    Article  CAS  Google Scholar 

  16. He, F. (2011). Laemmli-SDS-PAGE. Bio-101: e80. https://doi.org/10.21769/BioProtoc.80

  17. Hegde, S. S., & Shrader, T. E. (2001). FemABX family members are novel non ribosomal peptidyltransferases and important pathogen-specific drug targets. Journal of Biological Chemistry, 276(10), 6998–7003. https://doi.org/10.1074/jbc.M008591200

    Article  CAS  PubMed  Google Scholar 

  18. Henze, U., et al. (1993). Influence of FemB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Journal of bacteriology, 175(6), 1612–1620. https://doi.org/10.1128/jb.175.6.1612-1620.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu, Y.-J., et al. (2010). Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. Journal of Luminescence, 130(8), 1394–1399. https://doi.org/10.1016/j.jlumin.2010.02.053

    Article  CAS  Google Scholar 

  20. Jha, K. K., et al. (2010). Design, synthesis and biological evaluation of 1, 3, 4-oxadiazole derivatives. European Journal of Medicinal Chemistry, 45(11), 4963–4967. https://doi.org/10.1016/j.ejmech.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, W. C., Jr. (1988). Secondary structure of proteins through circular dichroism spectroscopy. Annual Review of Biophysics and Biophysical Chemistry, 17, 145–166. https://doi.org/10.1146/annurev.bb.17.060188.001045

    Article  CAS  PubMed  Google Scholar 

  22. William, A. E., Jr., et al. (1996). Cloning and characterization of femA and FemB from Staphylococcus epidermidis. Gene, 180(1–2), 177–181. https://doi.org/10.1016/S0378-1119(96)00450-7

    Article  Google Scholar 

  23. Katayama, Y., Ito, T., Hiramatsu, K., et al. (2000). A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrobial agents and chemotherapy, 44(6), 1549–1555. https://doi.org/10.1128/aac.44.6.1549-1555.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, S., et al. (2012). Design and synthesis of 1H–1, 2, 3-triazoles derived from econazole as antitubercular agents. Bioorganic & medicinal chemistry letters, 22(22), 6844–6847. https://doi.org/10.1016/j.bmcl.2012.09.041

    Article  CAS  Google Scholar 

  25. Li, Y., et al. (2005). The effect of Berberine on the secondary structure of human serum albumin. Journal of molecular structure, 743(1–3), 79–84. https://doi.org/10.1016/j.molstruc.2005.02.032

    Article  CAS  Google Scholar 

  26. Lim, D., & Strynadka, N. (2002). Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Structural & Molecular Biology, 9, 870–876. https://doi.org/10.1038/nsb858

    Article  CAS  Google Scholar 

  27. Luo, Y., et al. (2022). Characterization and functional properties of Maillard reaction products of β-lactoglobulin and polydextrose. Food Chemistry, 377, 131749. https://doi.org/10.1016/j.foodchem.2021.131749

    Article  CAS  PubMed  Google Scholar 

  28. Manjunatha, K., et al. (2010). Synthesis and biological evaluation of some 1, 3, 4-oxadiazole derivatives. European journal of medicinal chemistry, 45(11), 5225–5233. https://doi.org/10.1016/j.ejmech.2010.08.039

    Article  CAS  PubMed  Google Scholar 

  29. Menendez, C., et al. (2011). Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. European journal of medicinal chemistry, 46(11), 5524–5531. https://doi.org/10.1016/j.ejmech.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  30. Mohamed, M. I., Kandile, N. G., & Zaky, H. T. (2017). Synthesis and antimicrobial activity of 1, 3, 4-oxadiazole-2 (3h)-thione and azidomethanone derivatives based on quinoline-4-carbohydrazide derivatives. Journal of Heterocyclic Chemistry, 54(1), 35–43. https://doi.org/10.1002/jhet.2529

    Article  CAS  Google Scholar 

  31. Mohanta, Yugal Kishore, et al. (2020). Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Frontiers in Microbiology, 11(1143), 1–15. https://doi.org/10.3389/fmicb.2020.01143

  32. Moreillon, P., et al. (2008). New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Clinical Microbiology and Infection, 14, 32–41. https://doi.org/10.1111/j.1469-0691.2008.01961.x

    Article  CAS  PubMed  Google Scholar 

  33. O’Boyle, N. M., et al. (2011). Open Babel: An open chemical toolbox. Journal of cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  34. Ogata, M., et al. (1971). In vitro sensitivity of mycoplasmas isolated from various animals and sewage to antibiotics and nitrofurans. The Journal of antibiotics, 24(7), 443–451. https://doi.org/10.7164/antibiotics.24.443

    Article  CAS  PubMed  Google Scholar 

  35. Pinho, M. G., de Lencastre, H., et al. (2001). An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proceedings of the National Academy of Sciences, 98(19), 10886–10891. https://doi.org/10.1073/pnas.191260798

    Article  CAS  Google Scholar 

  36. Priester, J. H., et al. (2007). Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. Journal of Microbiological Methods, 68(3), 577–587. https://doi.org/10.1016/j.mimet.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  37. Qais, F. A., et al. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International journal of biological macromolecules, 97, 392–402. https://doi.org/10.1016/j.ijbiomac.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  38. Rahman, S., Rajak, K., Mishra, S., & Das, A. K. (2022). Identification of potential inhibitors against FemX of Staphylococcus aureus: A hierarchial in-silico drug repurposing approach. Journal of Molecular Graphics and Modelling, 115, 108215. https://doi.org/10.1016/j.jmgm.2022.108215

    Article  CAS  PubMed  Google Scholar 

  39. Rakib, A., et al. (2020). Biochemical and computational approach of selected phytocompounds from Tinospora crispa in the management of COVID-19. Molecules, 25(17), 3936. https://doi.org/10.3390/molecules25173936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rohrer, S., & Berger-Bachi, B. (2003). FemABX peptidyl transferases: A link between branched-chain cell wall peptide formation and β-lactam resistance in gram-positive cocci. Antimicrobial agents and chemotherapy, 47(3), 837–846. https://doi.org/10.1128/AAC.47.3.837-846.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneider, T., Senn, M. M., & B. Berger-B¨achi, A. Tossi, H.-G. Sahl, I. Wiedemann. (2004). In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Molecular Microbiology, 53(2), 675–685. https://doi.org/10.1111/j.1365-2958.2004.04149.x

    Article  CAS  PubMed  Google Scholar 

  42. Sekhon G, Singh R. (2019). Human aldose reductase unfolds through an intermediate. F1000Res. 8, 564. https://doi.org/10.12688/f1000research.18963.2

  43. Sharif, Shasad, et al. (2009). Characterization of peptidoglycan in fem-deletion mutants of methicillin-resistant Staphylococcus aureus by solid-state NMR. Biochemistry, 48(14), 3100–3108. https://doi.org/10.1021/bi801750u

    Article  CAS  PubMed  Google Scholar 

  44. Siddiqa, A., et al. (2015). Synthesis of some new 5-substituted-2-((6-chloro-3, 4-methylenedioxyphenyl) methylthio)-1, 3, 4-Oxadiazole derivatives as suitable antibacterial inhibitors. Bulletin of Faculty of Pharmacy, Cairo University, 53(1), 37–43. https://doi.org/10.1016/j.bfopcu.2014.10.001

    Article  Google Scholar 

  45. Siddiqui, N., et al. (2011). Triazoles: As potential bioactive agents. International Journal of Pharmacy Scievce Review & Resesrch, 8(1), 161–169.

    CAS  Google Scholar 

  46. Srinath, M., Bindu, B. B. V., Shailaja, A., et al. (2020). Isolation, characterization and in silico analysis of 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) gene from Andrographis paniculata (Burm. f) Nees. Molecular Biology Reports, 47, 639–654. https://doi.org/10.1007/s11033-019-05172-0

    Article  CAS  PubMed  Google Scholar 

  47. Stapleton, P. D., & Taylor, P. W. (2002). Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Science progress, 85(1), 57–72. https://doi.org/10.3184/003685002783238870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stetefeld, J., et al. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical reviews, 8(4), 409–427. https://doi.org/10.1007/s12551-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomsen, R. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of medicinal chemistry, 49, 3315–3321. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  50. Travis, B. A., et al. (2022). Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nature Communications, 13(1), 1–15. https://doi.org/10.1038/s41467-022-31573-0

    Article  CAS  Google Scholar 

  51. Typas, A., et al. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 10(2), 123–136. https://doi.org/10.1038/nrmicro2677

    Article  CAS  Google Scholar 

  52. Verma, S. K., et al. (2021). A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. European journal of medicinal chemistry, 219, 113442. https://doi.org/10.1016/j.ejmech.2021.113442

    Article  CAS  PubMed  Google Scholar 

  53. Vollmer, W., Blanot, D., & de Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS (Fed. Eur. Microbiol. Soc.) Microbiology Review, 32(2), 149–167. https://doi.org/10.1111/j.1574-6976.2007.00094.x

    Article  CAS  Google Scholar 

  54. Yang, J. T., Wu, C.-S.C., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 208–269. https://doi.org/10.1016/0076-6879(86)30013-2

    Article  CAS  PubMed  Google Scholar 

  55. York, A., et al. (2021). Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure, 29(7), 731–742. https://doi.org/10.1016/j.str.2021.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, W., et al. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell reports methods, 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would also like to express our gratitude to the Centre for Microbial Fermentation Technology (CMFT)-Microbiology, Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0), Central Facilities for Research and Development-Osmania University (CFRD-OU) and Centre for Cellular & Molecular Biology (CCMB), Hyderabad, for providing the necessary facilities and infrastructure.

Funding

The authors express their sincere thanks to DST-SERB-ECR (Grant file no: ECR/2017/003381) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

SRS conceived the idea and provided critical inputs to the concept and also supervised the progress of the project. AGA performed the biological experiments and molecular docking. KRA generated the data for ligand synthesis. All the authors are involved in data interpretation, manuscript writing, and approved the manuscript for publication.

Corresponding author

Correspondence to Someswar Rao Sagurthi.

Ethics declarations

Ethical Approval

As there is no human and animal involved in this study, the university and departmental ethical committee has declared no objection and passed the ethical clearance.

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the manuscript and agree with its submission to Applied Biochemistry and Biotechnology.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 960 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkiraju, A.G., Atcha, K.R. & Sagurthi, S.R. Cloning, Purification, and Biophysical Characterization of FemB Protein from Methicillin-Resistant Staphylococcus aureus and Inhibitors Screening. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04780-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04780-8

Keywords

Navigation