Skip to main content
Log in

Non-targeted Profiling of Sea Buckthorn Fruit Oil Fingerprints from 3 Regions and Study on Its Antioxidant Activity

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the chemical and volatile characteristics of sea buckthorn fruits from three different regions in China. The chemical composition of the volatile oil was determined by using a non-targeted gas chromatography and mass spectrometry (GC/MS) method and the differences in chemical composition among the three producing areas were compared by heatmap providing a visual basis for researchers. A total of 93 compounds were identified, including 52 compounds from the Northeast China, 51 from the Xinjiang region, and 37 from Inner Mongolia region. Then, the in vitro antioxidant activity of sea buckthorn fruit oil was measured using DPPH, ABTS, and SOD inhibition tests, and the results showed that sea buckthorn fruit oil in northeast China was the strongest antioxidant, followed by Inner Mongolia and Xinjiang. The results of the CCK-8 experiment indicated that within the tested concentration, there is no cell cytotoxicity of the essential oil in human umbilical vein endothelial cells (HUVECs) cells. The results could supply reference to distinguish sea buckthorn fruit from different production areas and, meanwhile, clarify the activity and safety of sea buckthorn oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data obtained during this study are included in this article.

References

  1. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Food and Chemical Toxicology, 46, 446–475. https://doi.org/10.1016/j.fc-t.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  2. Ashrafi, B., Marzieh, R., Gholami, E., Sattari, E., Marzban, A., Kheirandish, F., Khaksarian, M., Taherikalani, M., & Soroush, S. (2020). South African Journal of Botany, 135, 109–116. https://doi.org/10.1016/j.sajb.2020.08.015

    Article  CAS  Google Scholar 

  3. Zhang, N., & Yao, L. (2019). Journal of Agriculture and Food Chemistry, 67, 13790–13808. https://doi.org/10.1021/acs.jafc.9b00433

    Article  CAS  Google Scholar 

  4. Wang, N. N., Zheng, W. H., Zhang, K. X., Wen, X. F., Lu, S. G., & Yang, Z. G. (2021). China Journal of Chinese Materia Medica, 46(21), 5522–5532. https://doi.org/10.19540/j.cnki.cjcmm.20210520.201

    Article  CAS  PubMed  Google Scholar 

  5. Singh, S., & Sharma, P. C. (2022). Phytochemical Analysis PCA, 33(2), 214–225. https://doi.org/10.1002/pca.3081

    Article  CAS  PubMed  Google Scholar 

  6. Feng, X., Song, Z., Tao, A., Gong, P., Pei, W., & Zong, R. (2023). Frontiers in Nutrition, 10, 1136590. https://doi.org/10.3389/fnut.2023.1136590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, N., Wen, X., Gao, Y., Lu, S., Li, Y., Shi, Y., & Yang, Z. (2022). Frontiers in Nutrition, 9, 890486. https://doi.org/10.3389/fnut.2022.890486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan, Y., Xin, X., Liu, L., Feng, H., Wang, P., Zhang, Y., & Gao, D. (2020). Chemistry & Biodiversity, 17(12), e2000666. https://doi.org/10.1002/cbdv.202000666

    Article  CAS  Google Scholar 

  9. Ashim, C. R., Abhinav, P., & Ilora, G. (2023). Applied Biochemistry and Biotechnology, 195, 172–195. https://doi.org/10.1007/s12010-022-04145-7

    Article  CAS  Google Scholar 

  10. Ashim, C. R., Abhinav, P., Komal, P., Priyanka, D., Shivangi, S., Chandra, G., Ilora, G. (2023). Biocatalysis and Agricultural Biotechnology, 50. https://doi.org/10.1016/j.bcab.2023.102674

  11. Baker, J. E. (1976). Plant Physiology, 58(5), 644–647. https://doi.org/10.1104/pp.58.5.644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moon, J. Y., Jung, H. J., Moon, M. H., Chung, B. C., & Choi, M. H. (2009). Journal of the American Society for Mass Spectrometry, 20(9), 1626–1637. https://doi.org/10.1016/j.jasms.2009.9.04.020

    Article  CAS  PubMed  Google Scholar 

  13. Choudhury, T., Nigam, S., Dhasmana, S., Shamoon, M. (2021).Emerging technologies in data mining and information security. (Springer, Singapore, 2021), 815–826. https://doi.org/10.1007/978-981-15-9927-9_79

  14. Zhang, L., Qu, H., Liu, X., Li, Q., Liu, Y., Wang, W., Chen, D., Xiao, L., & Gu, R. (2022). Food Science & Nutrition, 10(12), 4247–4257. https://doi.org/10.1002/fsn3.3018

    Article  CAS  Google Scholar 

  15. Zajusz-Zubek, E., Mainka, A., & Kaczmarek, K. (2023). Dendrograms. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 58(3), 163–170. https://doi.org/10.1080/10934529.2019.1670026

    Article  CAS  Google Scholar 

  16. HabibiNajafi, M. B., Leufven, A., EdalatianDovom, M. R., Sedaghat, N., & Pourfarzad, A. (2019). Food Science & Nutrition, 7, 2684–2691. https://doi.org/10.1002/fsn3.1124

    Article  CAS  Google Scholar 

  17. Wu, F., Liu, R., Shen, X., Xu, H., & Sheng, L. (2019). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 354–362. https://doi.org/10.1016/j.saa.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  18. Aziz, Z. A. A., Ahmad, A., & Setapar, S. H. M. (2018). Current Drug Metabolism, 19, 1100–1110. https://doi.org/10.2174/1389200219666180723144850

    Article  CAS  PubMed  Google Scholar 

  19. Holmer, G., Kristensen, G., Sondergaard, E., Dam, H., Erziehwiss, Z. (1962) 2, 223–228. https://doi.org/10.1007/BF02020814

  20. Hutsell, T. C., & Quackenbush, F. W. (1967). Lipids, 2(4), 342–344. https://doi.org/10.1007/BF02532123

    Article  CAS  PubMed  Google Scholar 

  21. Walker, G., Flynn, P. F., & Kinsell, L. W. (1959). Lancet, 1(7067), 286–287. https://doi.org/10.1016/s0140-6736(59)90208-9

    Article  CAS  PubMed  Google Scholar 

  22. Hanssen, L., Warner, N. A., Braathen, T., Odland, J. Ø., Lund, E., Nieboer, E., & Sandanger, T. M. (2013). Environment International, 51, 82–87. https://doi.org/10.1016/j.envint.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  23. Dudzina, T., von Goetz, N., Bogdal, C., Biesterbos, J. W., & Hungerbühler, K. (2014). Environment International, 62, 86–94. https://doi.org/10.1016/j.envint.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Boussaha, S., Bramucci, M., Rebbas, K., Quassinti, L., Mekkiou, R., Maggi, F. (2023). Natural Product Research, 1–7. https://doi.org/10.1080/14786419.2023.2176492

  25. Negm, W. A., Abo El-Seoud, K. A., Kabbash, A., Kassab, A. A., & El-Aasr, M. (2021). Natural Product Research, 35(23), 5166–5176. https://doi.org/10.1080/14786419.2020.1789636

    Article  CAS  PubMed  Google Scholar 

  26. Marangoni, F., Agostoni, C., Borghi, C., Catapano, A. L., Cena, H., Ghiselli, A., LaVecchia, C., Lercker, G., Manzato, E., Pirillo, A., Riccardi, G., Risé, P., Visioli, F., & Poli, A. (2020). Atherosclerosis, 292, 90–98. https://doi.org/10.1016/j.atherosclerosis.2019.11.018

    Article  CAS  PubMed  Google Scholar 

  27. Whelan, J., & Fritsche, K. (2013). Advances in Nutrition (Bethesda, Md.), 4(3), 311–312. https://doi.org/10.3945/an.113.003772

    Article  PubMed  Google Scholar 

  28. Hamilton, J. S., & Klett, E. L. (2021). Prostaglandins, Leukotrienes and Essential Fatty Acids, 175, 102366. https://doi.org/10.1016/j.plefa.2021.102366

    Article  CAS  PubMed  Google Scholar 

  29. Kim, K. B., Nam, Y. A., Kim, H. S., Hayes, A. W., & Lee, B. M. (2014). Food and Chemical Toxicology, 70, 163–178. https://doi.org/10.1016/j.fct.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, P., Wang, S., Liang, C., Wang, Y., Wen, P., Wang, F., & Qin, G. (2017). Regulatory Toxicology and Pharmacology, 91, 50–57. https://doi.org/10.1016/j.yrtph.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  31. Wen, P., Zhao, P., Qin, G., Tang, S., Li, B., Zhang, J., & Peng, L. (2020). Drug and Chemical Toxicology, 43(4), 391–397. https://doi.org/10.1080/01480545.2018.1497047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has received strong support from the pharmaceutical research platform of Shandong University of Traditional Chinese Medicine.

Funding

This work was financially supported by Jinan “Twenty Rules for Colleges and Universities of Jinan” (No. 2020GXRC017) and Introduction and Education Program for young Talents in Shandong Colleges and Universities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ZS, GZ, XL, and QC. The first draft of the manuscript was written by ZS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lili Gong or Zhenhua Tian.

Ethics declarations

Ethics Approval

This is an observational study. The Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, G., Li, X. et al. Non-targeted Profiling of Sea Buckthorn Fruit Oil Fingerprints from 3 Regions and Study on Its Antioxidant Activity. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04744-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04744-y

Keywords

Navigation