Skip to main content
Log in

Chemical Hypoxic Preconditioning Improves Survival and Proliferation of Mesenchymal Stem Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) have been linked to tissue regeneration both in vitro and in vivo. However, poor engraftment and low survival rate of transplanted MSCs are still a major concern. It has been found that the proliferation, survival, and migration of MSCs are all increased by hypoxic preconditioning. However, the molecular mechanism through which hypoxic preconditioning enhances these beneficial properties of MSCs remains to be fully investigated. Therefore, the present study is aimed to investigate the mechanism by which hypoxic preconditioning enhances the survival of MSCs. We used proteomic analysis to explore the molecules that may contribute to the survival and proliferation of hypoxic preconditioned (HP) MSCs. The analysis revealed a higher expression of prelamin A/C (Lmna), glutamate dehydrogenase 1(Glud1), Actin, cytoplasmic 1(Actb), Alpha-enolase (Eno1), Glucose-6-phosphate 1-dehydrogenase (G6pd), Protein disulfide-isomerase A3 (Pdia3), Malate dehydrogenase (Mdh1), Peroxiredoxin-6 (Prdx6), Superoxide dismutase (Sod1), and Annexin A2 (Anxa2) in HP-MSCs. These proteins are possibly involved in cellular survival and proliferation through various cellular pathways. This research could aid in understanding the processes involved in hypoxic preconditioning of MSCs and designing of cell-based therapeutic strategies for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Yes.

Code Availability

Not applicable.

References

  1. Poomani, M. S., Mariappan, I., Perumal, R., Regurajan, R., Muthan, K., & Subramanian, V. (2022). Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: A promising frontier. Global Heart, 17(1), 19. https://doi.org/10.5334/gh.1098

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gu, W., Hong, X., Potter, C., Qu, A., & Xu, Q. (2020). Mesenchymal stem cells and vascular regeneration. Microcirculation (New York, N.Y.: 1994), 24(1), e12324. https://doi.org/10.1111/micc.12324

    Article  Google Scholar 

  3. Rashid, S., Qazi, R. E., Malick, T. S., Salim, A., Khan, I., Ilyas, A., & Haneef, K. (2020). Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Molecular and Cellular Biochemistry, 476(2), 909–919. https://doi.org/10.1007/s11010-020-03955-9

    Article  CAS  PubMed  Google Scholar 

  4. Tarique, S., Naeem, N., Salim, A., Ainuddin, J. A., & Haneef, K. (2022). The role of epigenetic modifiers in the hepatic differentiation of human umbilical cord derived mesenchymal stem cells. Biologia Futura, 73(4), 495–502. https://doi.org/10.1007/s42977-022-00145-0

    Article  CAS  PubMed  Google Scholar 

  5. Boulestreau, J., Maumus, M., Rozier, P., Jorgensen, C., & Noël, D. (2020). Mesenchymal stem cell derived extracellular vesicles in aging. Frontiers in Cell and Developmental Biology, 21(8), 107. https://doi.org/10.3389/fcell.2020.00107

    Article  Google Scholar 

  6. Turinetto, V., Vitale, E., & Giachino, C. (2016). Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. International Journal of Molecular Sciences, 17(7), 1164. https://doi.org/10.3390/ijms17071164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miclau, K., Hambright, W. S., Huard, J., Stoddart, M. J., & Bahney, C. S. (2023). Cellular expansion of MSCs: Shifting the regenerative potential. Aging Cell, 22(1), e13759. https://doi.org/10.1111/acel.13759

    Article  CAS  PubMed  Google Scholar 

  8. Li, N., Wang, C., Jia, L., & Du, J. (2014). Heart regeneration, stem cells, and cytokines. Regenerative Medicine Research, 2(1), 6. https://doi.org/10.1186/2050-490X-2-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haneef, K., Naeem, N., Khan, I., Iqbal, H., Kabir, N., Jamall, S., Zahid, M., & Salim, A. (2014). Conditioned medium enhances the fusion capability of rat bone marrow mesenchymal stem cells and cardiomyocytes. Molecular Biology Reports, 41(5), 3099–3112. https://doi.org/10.1007/s11033-014-3170-1

    Article  CAS  PubMed  Google Scholar 

  10. Wu, S., Li, H. Y., & Wong, T. M. (1999). Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor. Circulation Research, 84(12), 1388–1395. https://doi.org/10.1161/01.res.84.12.1388

    Article  CAS  PubMed  Google Scholar 

  11. Khan, I., Ali, A., Akhter, M. A., Naeem, N., Chotani, M. A., Mustafa, T., & Salim, A. (2016). Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats. Life Sciences, 162, 60–69. https://doi.org/10.1016/j.lfs.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y., Liu, H., Klein, M., Ostrominski, J., Hong, S. G., Yada, R. C., Chen, G., avarengom, K., Schwartzbeck, R., San, H., Yu, Z. X., Liu, C., Linask, K., Beers, J., Qiu, L., Dunbar, C. E., Boehm, M., & Zou, J. (2018). Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Scientific Reports, 8(1), 5907. https://doi.org/10.1038/s41598-018-24074-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jovanović, A., Jovanović, S., Lorenz, E., & Terzic, A. (1998). Recombinant cardiac ATP-sensitive K + channel subunits confer resistance towards chemical hypoxia-reoxygenation injury. Circulation, 98, 1548–1555. https://doi.org/10.1161/01.CIR.98.15.1548

    Article  PubMed  Google Scholar 

  14. Ali, A., Akhter, M. A., Haneef, K., Khan, I., Naeem, N., Habib, R., Kabir, N., & Salim, A. (2015). Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene, 555(2), 448–457. https://doi.org/10.1016/j.gene.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  15. Qazi, R. E., Khan, I., Haneef, K., Malick, T. S., Naeem, N., Ahmad, W., Salim, A., & Mohsin, S. (2022). Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model. World Journal of Stem Cells, 14(8), 633–657. https://doi.org/10.4252/wjsc.v14.i8.633

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gupta, S., Rawat, S., Krishnakumar, V., Rao, E. P., & Mohanty, S. (2022). Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell and Tissue Research, 388(3), 535–548. https://doi.org/10.1007/s00441-022-03615-y

    Article  CAS  PubMed  Google Scholar 

  17. Nakada, Y., Canseco, D. C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C. X., Shah, A. M., Zhang, H., Faber, J. E., Kinter, M. T., Szweda, L. I., Xing, C., Hu, Z., Deberardinis, R. J., Schiattarella, G., Hill, J. A., Oz, O., Lu, Z., Zhang, C. C., … Sadek, H. A. (2017). Hypoxia induces heart regeneration in adult mice. Nature, 541(7636), 222–227. https://doi.org/10.1038/nature20173

    Article  CAS  PubMed  Google Scholar 

  18. Hou, J., Wang, L., Long, H., Wu, H., Wu, Q., Zhong, T., Chen, X., Zhou, C., Guo, T., & Wang, T. (2017). Hypoxia preconditioning promotes cardiac stem cell survival and cardiogenic differentiation in vitro involving activation of the HIF-1α/apelin/APJ axis. Stem Cell Research & Therapy, 8(1), 215. https://doi.org/10.1186/s13287-017-0673-4

    Article  CAS  Google Scholar 

  19. Malashicheva, A., & Perepelina, K. (2021). Diversity of Nuclear Lamin A/C action as a key to tissue-specific regulation of cellular identity in health and disease. Frontiers in Cell and Developmental Biology, 9, 761469. https://doi.org/10.3389/fcell.2021.761469

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B., Yang, Y., Keyimu, R., Hao, J., Zhao, Z., & Ye, R. (2019). The role of lamin A/C in mesenchymal stem cell differentiation. Journal of Physiology and Biochemistry, 75(1), 11–18. https://doi.org/10.1007/s13105-019-00661-z

    Article  CAS  PubMed  Google Scholar 

  21. Carmosino, M., Torretta, S., Procino, G., Gerbino, A., Forleo, C., Favale, S., & Svelto, M. (2014). Role of nuclear lamin A/C in cardiomyocyte functions. Biology of the Cell, 106(10), 346–358. https://doi.org/10.1111/boc.201400033

    Article  CAS  PubMed  Google Scholar 

  22. Sieprath, T., Corne, T. D., Nooteboom, M., Grootaert, C., Rajkovic, A., Buysschaert, B., Robijns, J., Broers, J. L., Ramaekers, F. C., Koopman, W. J., Willems, P. H., & De-Vos, W. H. (2015). Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus, 6(3), 236–246. https://doi.org/10.1080/19491034.2015.1050568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung, Y., Wang, J., Song, J., Shiozawa, Y., Wang, J., Havens, A., Wang, Z., Sun, Y. X., Emerson, S. G., Krebsbach, P. H., & Taichman, R. S. (2007). Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood, 110(1), 82–90. https://doi.org/10.1182/blood-2006-05-021352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma, M. C. (2019). Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. International Journal of Cancer, 144(9), 2074–2081. https://doi.org/10.1002/ijc.31817

    Article  CAS  PubMed  Google Scholar 

  25. Genetos, D. C., Wong, A., Watari, S., & Yellowley, C. E. (2010). Hypoxia increases annexin A2 expression in osteoblastic cells via VEGF and ERK. Bone, 47(6), 1013–1019. https://doi.org/10.1016/j.bone.2010.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stanton, R. C. (2012). Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 64(5), 362–369. https://doi.org/10.1002/iub.1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chettimada, S., Gupte, R., Rawat, D., Gebb, S. A., McMurtry, I. F., & Gupte, S. A. (2015). Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: Implication in pulmonary hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308(3), L287-300. https://doi.org/10.1152/ajplung.00229.2014

    Article  CAS  PubMed  Google Scholar 

  28. Yoo, D. Y., Cho, S. B., Jung, H. Y., Kim, W., Choi, G. M., Won, M. H., Kim, D. W., Hwang, I. K., Choi, S. Y., & Moon, S. M. (2017). Tat-protein disulfide-isomerase A3: a possible candidate for preventing ischemic damage in the spinal cord. Cell Death and Disease, 8(10), e3075. https://doi.org/10.1038/cddis.2017.473

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oo, D. Y., Cho, S. B., Jung, H. Y., Kim, W., Lee, K. Y., Kim, J. W., Moon, S. M., Won, M. H., Choi, J. H., Yoon, Y. S., Kim, D. W., Choi, S. Y., & Hwang, I. K. (2019). Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress. Neurochemistry International, 122, 19–30. https://doi.org/10.1016/j.neuint.2018.11.002

    Article  CAS  Google Scholar 

  30. Almaguel, F. A., Sanchez, T. W., Ortiz-Hernandez, G. L., & Casiano, C. A. (2021). Alpha-Enolase: Emerging tumor-associated antigen, cancer biomarker, and oncotherapeutic target. Frontiers in Genetics, 11, 614726. https://doi.org/10.3389/fgene.2020.614726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, H., Wang, J., Guo, J., Li, Y., Lian, S., Guo, W., Yang, H., Kong, F., Zhen, L., Guo, L., & Liu, Y. (2016). Progress in the biological function of alpha-enolase. Animal Nutrition, 2(1), 12–17. https://doi.org/10.1016/j.aninu.2016.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shi, Y., Liu, J., Zhang, R., Zhang, M., Cui, H., Wang, L., Cui, Y., Wang, W., Ying, S., & Wang, C. (2023). Targeting endothelial ENO1 (Enolase) -PI3K-Akt-mTOR Axis alleviates hypoxic pulmonary hypertension. Hypertension, 80(5), 1035–1047. https://doi.org/10.1161/HYPERTENSIONAHA.122.19857

    Article  CAS  PubMed  Google Scholar 

  33. Jin, L., Li, D., Alesi, G. N., Fan, J., Kang, H. B., Lu, Z., Boggon, T. J., Jin, P., Yi, H., Wright, E. R., Duong, D., Seyfried, N. T., Egnatchik, R., DeBerardinis, R. J., Magliocca, K. R., He, C., Arellano, M. L., Khoury, H. J., Shin, D. M., … Kang, S. (2015). Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell, 27(2), 257–270. https://doi.org/10.1016/j.ccell.2014.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chetri, P. B., Shukla, R., & Tripathi, T. (2020). Identification and characterization of cytosolic malate dehydrogenase from the liver fluke Fasciolagigantica. Scientific Reports, 10, 13372. https://doi.org/10.1038/s41598-020-70202-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, B., Tornmalm, J., Widengren, J., Vakifahmetoglu-Norberg, H., & Norberg, E. (2017). Characterization of the role of the malate dehydrogenases to lung tumor cell survival. Journal of Cancer, 8(11), 2088–2096. https://doi.org/10.7150/jca.19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bunnell, T. M., Burbach, B. J., Shimizu, Y., & Ervasti, J. M. (2011). β-Actin specifically controls cell growth, migration, and the G-actin pool. Molecular Biology of the Cell, 22(21), 4047–4058. https://doi.org/10.1091/mbc.E11-06-0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. T., Cheng, K., & Zhu, L. (2021). Hypoxia accelerate β-actin expression through transcriptional activation of ACTB by nuclear respiratory factor-1. Molecular biology, 55, 398–404.

    Article  Google Scholar 

  38. Asuni, A. A., Guridi, M., Sanchez, S., & Sadowski, M. J. (2015). Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochemistry International, 90, 152–165. https://doi.org/10.1016/j.neuint.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arevalo, J. A., & Vázquez-Medina, J. P. (2018). The role of peroxiredoxin 6 in cell signaling. Antioxidants (Basel), 7(12), 172. https://doi.org/10.3390/antiox7120172

    Article  CAS  PubMed  Google Scholar 

  40. Tulsawani, R., Kelly, L. S., Fatma, N., Kubo, E., Kumar, A., & Singh, D. P. (2010). Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neuroscience, 11, 125. https://doi.org/10.1186/1471-2202-11-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sah, S. K., Agrahari, G., & Kim, T. Y. (2020). Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell & Bioscience, 10, 22. https://doi.org/10.1186/s13578-020-00386-3

    Article  CAS  Google Scholar 

  42. Khanh, V. C., Yamashita, T., Ohneda, K., Tokunaga, C., Kato, H., Osaka, M., Hiramatsu, Y., & Ohneda, O. (2020). Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Scientific Reports, 10, 17315. https://doi.org/10.1038/s41598-020-74444-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work presented in this manuscript received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwal Haneef.

Ethics declarations

Ethics Approval

This study was approved by the institutional review board (NCP-IRB-108).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4.76 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haneef, K., Salim, A., Hashim, Z. et al. Chemical Hypoxic Preconditioning Improves Survival and Proliferation of Mesenchymal Stem Cells. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04743-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04743-z

Keywords

Navigation