Skip to main content
Log in

Biosynthesis, Characterization, and Bioactivity of L-Alanyl-L-tyrosine in Promoting Melanin Synthesis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

L-Alanyl-L-tyrosine (L-Ala-Tyr) is a dipeptide formed by the condensation of L-alanine methyl ester and L-tyrosine. After entering the body, it can be rapidly broken down to release tyrosine. In this study, L-Ala-Tyr was successfully prepared by using α-ester acyltransferase as biocatalyst and alanine methyl ester (L-Ala-OMe) and tyrosine (L-Tyr) as acyl donor and nucleophile, respectively. The dipeptide yield was increased from 15 to 50% by optimizing the conditions: boric acid-borax (0.2 mol/L), 30°C, pH 9.5, 2:1 acyl donor to nucleophile ratio, DES (ChCl/urea), and 15%(v/v) water content. The catalytic product is then isolated and purified. The structure of the product was identified by high-performance liquid chromatography, mass spectrometry, proton nuclear magnetic resonance, and carbon spectroscopy. Its biological activity was preliminarily determined by the B16-F10 mouse melanoma cell model. The results showed that the purity of L-Ala-Tyr prepared by the separation and purification method of this study was 96.8%, and the mass spectrometry and nuclear magnetic resonance spectroscopy showed that the structure of the peptide was consistent with the expected structure. In addition, the preliminary physiological activity identification results show that L-Ala-Tyr has no toxic effect on cells in the concentration range of 100–800 μmol·L−1, and at the optimal concentration, compared with the positive control 8-methoxypsoralen, it can promote the production of melanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All further relevant data generated or analyzed during this study are included in this published article and its supplementary files.

References

  1. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1), 70–71. https://doi.org/10.1039/B210714G.

  2. Abe, I., Hara, S., & Yokozeki, K. (2011). Gene cloning and characterization of alpha-amino acid ester acyl transferase in Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458. Bioscience, Biotechnology, and Biochemistry, 75(11), 2087–2092. https://doi.org/10.1271/bbb.110181

    Article  CAS  PubMed  Google Scholar 

  3. Carta, R., & Tola, G. (1996). Solubilities of l-cystine, l-tyrosine, l-leucine, and glycine in aqueous solutions at various pHs and NaCl concentrations. Journal of Chemical & Engineering Data, 41(3), 414–417. https://doi.org/10.1021/je9501853

    Article  CAS  Google Scholar 

  4. Chalamaiah, M., Yu, W., & Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 245, 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087

    Article  CAS  PubMed  Google Scholar 

  5. Chung, H., Jung, H., Lee, J. H., Oh, H. Y., Kim, O. B., Han, I. O., & Oh, E. S. (2014). Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake. The Journal of Biological Chemistry, 289(31), 21751–21759. https://doi.org/10.1074/jbc.M113.541177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daabees, T. T., & Stegink, L. D. (1978). L-Alanyl-L-tyrosine as a tyrosine source during intravenous nutrition of the rat. The Journal of Nutrition, 108(7), 1104–1113. https://doi.org/10.1093/jn/108.7.1104

    Article  CAS  PubMed  Google Scholar 

  7. Guajardo, N., & Domínguez de María, P. (2019). Continuous biocatalysis in environmentally-friendly media: A triple synergy for future sustainable processes. ChemCatChem, 11(14), 3128–3137. https://doi.org/10.1002/cctc.201900773

    Article  CAS  Google Scholar 

  8. Huo, T., Ma, J. J., Shen, N., Jia, Q. Y., & Liu, Q. F. (2014). Chemical synthesis of L-alanyl-L-tyrosine dipeptide. Chemical Technology and Development, 43(02), 16–17. https://doi.org/10.3969/j.issn.1671-9905.2014.02.005

    Article  CAS  Google Scholar 

  9. Lee, Y., & Hyun, C. G. (2022). Mechanistic insights into the ameliorating effect of melanogenesis of psoralen derivatives in B16F10 melanoma cells. Molecules, 27(9). https://doi.org/10.3390/molecules27092613

  10. LeWitt, T. M., & Kundu, R. V. (2021). Vitiligo. JAMA Dermatology, 157(9), 1136–1136. https://doi.org/10.1001/jamadermatol.2021.1688

    Article  PubMed  Google Scholar 

  11. Li, Y. M., Gao, J. Q., Pei, X. Z., Du, C., Fan, C., Yuan, W. J., & Bai, F. W. (2019). Production of L-alanyl-L-glutamine by immobilized Pichia pastoris GS115 expressing alpha-amino acid ester acyltransferase. Microbial Cell Factories, 18(1), 27. https://doi.org/10.1186/s12934-019-1077-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, P. F., Lu, Q. M., Hu, X. Q., Hou, X. W., & Zhang, H. B. (2018). Expression, purification, characterization and application of α-amino acid ester acyltransferase from recombinant Escherichia coli. Chinese Journal of Biotechnology, 34(7), 9. https://doi.org/10.13345/j.cjb.180017

    Article  CAS  Google Scholar 

  13. Maher, T. J., Kiritsy, P. J., Moya-Huff, F. A., Casacci, F., De Marchi, F., & Wurtman, R. J. (1990). Use of parenteral dipeptides to increase serum tyrosine levels and to enhance catecholamine-mediated neurotransmission. Journal of Pharmaceutical Sciences, 79(8), 685–687. https://doi.org/10.1002/jps.2600790807

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoud, D. B., ElMeshad, A. N., Fadel, M., Tawfik, A., & Ramez, S. A. (2022). Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study. International Journal of Pharmaceutics, 614, 121459. https://doi.org/10.1016/j.ijpharm.2022.121459

    Article  CAS  PubMed  Google Scholar 

  15. Najem, A., Wouters, J., Krayem, M., Rambow, F., Sabbah, M., Sales, F., Awada, A., Aerts, S., Journe, F., Marine, J. C., & Ghanem, G. E. (2021). Tyrosine-dependent phenotype switching occurs early in many primary melanoma cultures limiting their translational value. Frontiers in Oncology, 11, 780654. https://doi.org/10.3389/fonc.2021.780654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santos, S., Torcato, I., & Castanho, M. A. (2012). Biomedical applications of dipeptides and tripeptides. Biopolymers, 98(4), 288–293. https://doi.org/10.1002/bip.22067

    Article  CAS  PubMed  Google Scholar 

  17. Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable Chemistry. Chemical Reviews, 118(2), 801–838. https://doi.org/10.1021/acs.chemrev.7b00203

    Article  CAS  PubMed  Google Scholar 

  18. Slominski, A., Moellmann, G., Kuklinska, E., Bomirski, A., & Pawelek, J. (1988). Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa. Journal of Cell Science, 89(3), 287–296. https://doi.org/10.1242/jcs.89.3.287

    Article  CAS  PubMed  Google Scholar 

  19. Slominski, A., Zmijewski, M. A., & Pawelek, J. (2012). L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell & Melanoma Research, 25(1), 14–27. https://doi.org/10.1111/j.1755-148X.2011.00898.x

    Article  CAS  Google Scholar 

  20. Tan, J. N., & Dou, Y. (2020). Deep eutectic solvents for biocatalytic transformations: Focused lipase-catalyzed organic reactions. Applied Microbiology and Biotechnology, 104(4), 1481–1496. https://doi.org/10.1007/s00253-019-10342-y

    Article  CAS  PubMed  Google Scholar 

  21. Wang, M., Qi, W., Yu, Q., Su, R., & He, Z. (2011). Kinetically controlled enzymatic synthesis of dipeptide precursor of L-alanyl-L-glutamine. Biotechnology and Applied Biochemistry, 58(6), 449–455. https://doi.org/10.1002/bab.55

    Article  CAS  PubMed  Google Scholar 

  22. Wang, T., Zhang, Y.-R., Liu, X.-H., Ge, S., & Zhu, Y.-S. (2019). Strategy for the biosynthesis of short oligopeptides: Green and sustainable chemistry. Biomolecules, 9(11). https://doi.org/10.3390/biom9110733

  23. Wang, X., Chen, Y., Lan, B., Wang, Y., Lin, W., Jiang, X., Ye, J., Shang, B., Feng, C., Liu, J., Zhai, J., Xu, M., Li, Q., Lin, L., Hu, M., Zheng, F., Chen, L., Shao, C., Wang, Y., & Shi, Y. (2022). Heterogeneity of tyrosine-based melanin anabolism regulates pulmonary and cerebral organotropic colonization microenvironment of melanoma cells. Theranostics, 12(5), 2063–2079. https://doi.org/10.7150/thno.69198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong, J., Cao, S. L., Zong, M. H., Lou, W. Y., & Wu, X. L. (2020). Biosynthesis of alanyl-histidine dipeptide catalyzed by papain immobilized on magnetic nanocrystalline cellulose in deep eutectic solvents. Applied Biochemistry and Biotechnology, 192(2), 573–584. https://doi.org/10.1007/s12010-020-03345-3

    Article  CAS  PubMed  Google Scholar 

  25. Yokozeki, K., & Hara, S. (2005). A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. Journal of Biotechnology, 115(2), 211–220. https://doi.org/10.1016/j.jbiotec.2004.07.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Anhui Provincial Natural Science Foundation (grant no. 2108085MC120) and Anhui Province Key Research and Development Plan Project 2023s07020013.

Author information

Authors and Affiliations

Authors

Contributions

YN Fan: software, validation, formal analysis, investigation, writing (original draft), and visualization. JA Wei: software and formal analysis. ZW Li: software. JW Yang: methodology. HB Zhang: conceptualization and supervision. XQ Hu: conceptualization, formal analysis, resources, data curation, writing (review and editing), visualization, and funding acquisition.

Corresponding authors

Correspondence to Xueqin Hu or Hongbin Zhang.

Ethics declarations

Ethical approval

This study does not contain any studies with human participants or animals performed.

Conflict of interest

The authors declare competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• This study provides a method to synthesize dipeptide by using α-ester acyltransferase in DES.

• Through process optimization, the conversion rate of the substrate was improved.

• The physiological activity of Ala-Tyr was proved by the melanocyte experiment.

Supplementary Information

ESM 1

(DOCX 183 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wei, J., Li, Z. et al. Biosynthesis, Characterization, and Bioactivity of L-Alanyl-L-tyrosine in Promoting Melanin Synthesis. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04713-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04713-5

Keywords

Navigation