Skip to main content

Advertisement

Log in

Virtual Screening, Molecular Docking, and Dynamic Simulations Revealed TGF-β1 Potential Inhibitors to Curtail Cervical Cancer Progression

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cervical cancer is one of the main causes of cancer death in women globally, and its epidemiology is similar to that of a low-infectious venereal illness. Many sexual partners and early age at first intercourse have been demonstrated to have a significant influence on risk. TGF-β1 is a multifunctional cytokine that is required for cervical carcinoma metastasis, tumor development, progression, and invasion. The TGF-β1 signaling system plays a paradoxical function in cancer formation, suppressing early-stage tumor growth while increasing tumor progression and metastasis. Importantly, TGF-β1 and TGF-β receptor 1 (TGF-βR1), two components of the TGF-β signaling system, are substantially expressed in a range of cancers, including breast cancer, colon cancer, gastric cancer, and hepatocellular carcinoma. The current study aims to investigate possible inhibitors targeting TGF-β1 using molecular docking and dynamic simulations. To target TGF-β1, we used anti-cancer drugs and small molecules. MVD was utilized for virtual screening, and the highest scoring compound was then subjected to MD simulations using Schrodinger software package v2017-1 (Maestro v11.1) to identify the most favorable lead interactions against TGF-β1. The Nilotinib compound has shown the least XP Gscore of -2.581 kcal/mol, 30ns MD simulations revealing that the Nilotinib- TGF-β1 complex possesses the lowest energy of -77784.917 kcal/mol. Multiple parameters, including Root Mean Square Deviation, Root Mean Square Fluctuation, and Intermolecular Interactions, were used to analyze the simulation trajectory. Based on the results; we conclude that the ligand nilotinib appears to be a promising prospective TGF-β1inhibitor for reducing TGF-β1 expression ad halting cervical cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data supporting the productivity of this investigation are available from the corresponding author upon request.

References

  1. Dell, G., & Gaston, K. (2001). Contributions in the domain of cancer research: Review human papillomaviruses and their role in cervical cancer. Cellular and Molecular Life Sciences, 58, 1923–1942. https://doi.org/10.1007/PL00000827

    Article  CAS  PubMed  Google Scholar 

  2. D’oria, O., Corrado, G., Laganà, A. S., Chiantera, V., Vizza, E., & Giannini, A. (2022). New advances in cervical cancer: from bench to bedside. International Journal of Environmental Research and Public Health, 19, 7094. https://doi.org/10.3390/IJERPH19127094

    Article  PubMed  PubMed Central  Google Scholar 

  3. Viveros-Carreño, D., Fernandes, A., & Pareja, R. (2023). Updates on cervical cancer prevention. International Journal of Gynecological Cancer, 33, 394–402. https://doi.org/10.1136/IJGC-2022-003703

    Article  PubMed  Google Scholar 

  4. Deepti, P., Pasha, A., Kumbhakar, D. V., Doneti, R., Heena, S. K., Bhanoth, S., Poleboyina, P. K., Yadala, R., Annapurna, S. D., & Pawar, S. C. (2022). Overexpression of secreted phosphoprotein 1 (SPP1) predicts poor survival in HPV positive cervical cancer. Gene, 824, 146381. https://doi.org/10.1016/J.GENE.2022.146381

    Article  CAS  PubMed  Google Scholar 

  5. Bedell, S. L., Goldstein, L. S., Goldstein, A. R., & Goldstein, A. T. (2020). Cervical cancer screening: past, present, and future. Sexual Medicine Reviews, 8, 28–37. https://doi.org/10.1016/j.sxmr.2019.09.005

    Article  PubMed  Google Scholar 

  6. Ahmed, H. G., Bensumaidea, S. H., Alshammari, F. D., Alenazi, H., ALmutlaq, F. S., Alturkstani, B. A., & Aladani, M. Z. (2017). Prevalence of human papillomavirus subtypes 16 and 18 among yemeni patients with cervical Cancer. Asian Pacific Journal of Cancer Prevention, 18, 1543. https://doi.org/10.22034/APJCP.2017.18.6.1543

    Article  PubMed  PubMed Central  Google Scholar 

  7. Psyrri, A., Boutati, E., & Karageorgopoulou, S. (2011). Human papillomavirus in head and neck cancers: Biology, prognosis, hope of treatment, and vaccines. Anti-Cancer Drugs, 22, 586–590. https://doi.org/10.1097/CAD.0B013E328344EC44

    Article  CAS  PubMed  Google Scholar 

  8. zur Hausen, H. (2009). Papillomaviruses in the causation of human cancers - a brief historical account. Virology, 384, 260–265. https://doi.org/10.1016/J.VIROL.2008.11.046

    Article  PubMed  Google Scholar 

  9. Jalil, A. T., Al-Khafaji, A. H. D., Karevskiy, A., Dilfy, S. H., & Hanan, Z. K. (2021). Polymerase chain reaction technique for molecular detection of HPV16 infections among women with cervical cancer in Dhi-Qar Province. Materials Today: Proceedings, 16, 19. https://doi.org/10.1016/j.matpr.2021.05.211

    Article  CAS  Google Scholar 

  10. Steben, M., & Duarte-Franco, E. (2007). Human papillomavirus infection: Epidemiology and pathophysiology. Gynecologic Oncology, 107. https://doi.org/10.1016/J.YGYNO.2007.07.067

  11. Vora, K., & Saiyed, S. (2020). Cervical cancer screening in India: Need of the hour. Cancer Research, Statistics, and Treatment, 3, 796. https://doi.org/10.4103/crst.crst_321_20

    Article  Google Scholar 

  12. HPV Information Centre. Available online: https://hpvcentre.net/datastatistics.php. Accessed 13 Mar 2023.

  13. Shiota, M., Fujimoto, N., Matsumoto, T., Tsukahara, S., Nagakawa, S., Ueda, S., Ushijima, M., Kashiwagi, E., Takeuchi, A., Inokuchi, J., et al. (2021). Differential Impact of TGFB1 variation by metastatic status in androgen-deprivation therapy for prostate Cancer. Frontiers in Oncology, 11, 1784. https://doi.org/10.3389/FONC.2021.697955/BIBTEX

    Article  Google Scholar 

  14. Xie, F., Ling, L., van Dam, H., Zhou, F., & Zhang, L. (2018). TGF- β signaling in cancer metastasis. Acta Biochimica et Biophysica Sinica, 50, 121–132. https://doi.org/10.1093/abbs/gmx123

  15. Huang, C. Y., Chung, C. L., Hu, T. H., Chen, J. J., Liu, P. F., & Chen, C. L. (2021). Recent progress in TGF-β inhibitors for cancer therapy. Biomedicine & Pharmacotherapy, 134. https://doi.org/10.1016/j.biopha.2020.111046

  16. Syed, V. (2016). TGF-β signaling in Cancer. Journal of Cellular Biochemistry, 117, 1279–1287. https://doi.org/10.1002/JCB.25496

    Article  CAS  PubMed  Google Scholar 

  17. Trugilo, K. P., Cebinelli, G. C. M., Pereira, É. R., Okuyama, N. C. M., Cezar-dos-Santos, F., Castilha, E. P., Flauzino, T., Hoch, V. B. B., Watanabe, M. A. E., Guembarovski, R. L., et al. (2022). Haplotype structures and protein levels of TGFB1 in HPV infection and cervical lesion: A case-control study. Cells, 12. https://doi.org/10.3390/CELLS12010084

  18. Zhang, M., Zhang, Y. Y., Chen, Y., Wang, J., Wang, Q., & Lu, H. (2021). TGF-β signaling and resistance to Cancer Therapy. Frontiers in Cell and Developmental Biology, 9, 3310. https://doi.org/10.3389/FCELL.2021.786728/BIBTEX

    Article  Google Scholar 

  19. Wodziński, D., Wosiak, A., Pietrzak, J., Świechowski, R., Kordek, R., & Balcerczak, E. (2022). Assessment of the TGFB1 gene expression and methylation status of the promoter region in patients with colorectal cancer. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-022-15599-4

  20. Hargadon, K. M. (2016). Dysregulation of TGFβ1 activity in Cancer and its influence on the quality of Anti-Tumor Immunity. J Clin Med, 5, https://doi.org/10.3390/JCM5090076

  21. Ewart-toland, A., Chan, J. M., Yuan, J., Balmain, A., & Ma, J. (2004). A gain of function TGFB1 polymorphism may be Associated with late stage prostate cancer. Cancer Epidemiology Biomarkers & Prevention, 13, 759–765.

  22. Lu, Z., Tang, Y., Luo, J., Zhang, S., Zhou, X., & Fu, L. (2017). Advances in targeting the transforming growth factor β1 signaling pathway in lung cancer radiotherapy. Oncology Letters, 14, 5681–5687. https://doi.org/10.3892/OL.2017.6991/HTML

    Article  PubMed  PubMed Central  Google Scholar 

  23. RCSB PDB: Homepage. Available online: https://www.rcsb.org/. Accessed 24 Jun 2021.

  24. PubChem Available online: https://pubchem.ncbi.nlm.nih.gov/. Accessed 24 Jun 2021.

  25. DrugBank Online | Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/. Accessed 21 Jul 2021.

  26. Hyper. Available online: https://hyper.com/. Accessed 24 Jun 2021.

  27. ChemDraw - PerkinElmer. Available online: https://perkinelmerinformatics.com/products/research/chemdraw/. Accessed 24 Jun 2021.

  28. Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. In Methods in Molecular Biology (Vol. 2053, pp. 149–167). Humana Press Inc.

  29. Molegro Data Modeller | Macs in Chemistry Available online: https://www.macinchem.org/blog/files/671a3395f65b525e75347a60edf7935e-236.php. Accessed 24 Jun 2021.

  30. Molegro Molecular Viewer – Molexus Available online: http://molexus.io/molegro-molecular-viewer/. Accessed 24 Jun 2021.

  31. S, D., & AJ, O. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  CAS  Google Scholar 

  32. BIOVIA Discovery Studio - BIOVIA - Dassault Systèmes® Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/. Accessed 21 Jul 2021.

  33. Swiss PDB Viewer - Home Available online: https://spdbv.vital-it.ch/. Accessed 18 Jul 2021.

  34. Daoud, I., Melkemi, N., Salah, T., Ghalem, S., & Combined, Q. S. A. R. (2018). Molecular docking and molecular dynamics study on new acetylcholinesterase and butyrylcholinesterase inhibitors. Computational Biology and Chemistry, 74, 304–326. https://doi.org/10.1016/j.compbiolchem.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  35. Sadeghi, F., Afkhami, A., Madrakian, T., & Ghavami, R. (2021). Computational study to select the capable anthracycline derivatives through an overview of drug structure-specificity and cancer cell line-specificity. Chemical Papers, 75, 523–538. https://doi.org/10.1007/s11696-020-01321-z

    Article  CAS  Google Scholar 

  36. Hocquet, A., & Langgård, M. (1998). An evaluation of the MM + force field. Journal of Molecular Modeling, 4, 94–112. https://doi.org/10.1007/s008940050128

    Article  CAS  Google Scholar 

  37. Prasad, C., Rao, A. V., & Rao, M. V. (2014). Computer aided design and molecular docking studies on a series of 1, 3-thiazolidine-2, 4-diones as new class of 5-lipoxygenase inhibitors. Journal of Pharmacy Research, 8, 858–863.

    CAS  Google Scholar 

  38. Kaushik, P., Lal Khokra, S., Rana, A. C., & Kaushik, D. (2014). Pharmacophore modeling and molecular docking studies on pinus roxburghii as a target for diabetes mellitus. Advances in Bioinformatics, 2014https://doi.org/10.1155/2014/903246

  39. Kumar, P., Shailima, P., Ravinder, R., & Akbar, D. (2021). Screening and identification of potential iNOS inhibitors to Curtail Cervical Cancer Progression: An in Silico Drug Repurposing Approach. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03718-2

    Article  PubMed  Google Scholar 

  40. Yang, J. M., Chen, C. C., & GEMDOCK. (2004). A generic evolutionary method for molecular docking. Proteins: Structure, Function, and Genetics, 55, 288–304. https://doi.org/10.1002/prot.20035

    Article  CAS  Google Scholar 

  41. Madhulitha, N. R., Pradeep, N., Sandeep, S., Hema, K., & Chiranjeevi, P. (2017). E-Pharmacophore model assisted discovery of novel antagonists of nNOS. Biochemistry & Analytical Biochemistry, 6, 307. https://doi.org/10.4172/2161-1009.1000307

    Article  CAS  Google Scholar 

  42. Pradeep, N., Munikumar, M., Swargam, S., Hema, K., Kumar, K. S., & Umamaheswari, A. (2015). 197 Combination of e-pharmacophore modeling, multiple docking strategies and molecular dynamic simulations to discover of novel antagonists of BACE1. Journal of Biomolecular Structure and Dynamics, 33, 129–130. https://doi.org/10.1080/07391102.1032834

  43. Umamaheswari, A., Kumar, M. M., Pradhan, D., & Marisetty, H. (2011). Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus. Interdisciplinary Sciences, 3, 64–77. https://doi.org/10.1007/S12539-011-0064-Y

    Article  CAS  Google Scholar 

  44. Sandeep, S., Priyadarshini, V., Pradhan, D., Munikumar, M., & Umamaheswari, A. (2022). Docking and molecular dynamics simulations studies of human protein kinase catalytic subunit alpha with antagonist. Journal of Clinical and Scientific Research, 1, 15.

    Google Scholar 

  45. Pasha, A., Kumbhakar, D. V., Doneti, R., Kumar, K., Dharmapuri, G., Poleboyina, P. K., Basavaraju, S. K. H., Pasumarthi, P. (2021). D.; S. D., A.;. Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and in Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer. Oxidative Medicine and Cellular Longevity, 2021https://doi.org/10.1155/2021/6692628

  46. Katari, S. K., Natarajan, P., Swargam, S., Kanipakam, H., Pasala, C., & Umamaheswari, A. (2016). Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. Journal of Receptor and Signal Transduction Research, 36, 558–571. https://doi.org/10.3109/10799893.2016.1141955

    Article  CAS  PubMed  Google Scholar 

  47. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749. https://doi.org/10.1021/JM0306430/SUPPL_FILE/JM0306430_S.PDF

  48. Umamaheswari, A. (2016). Inhibitor Design for VacA Toxin of Helicobacter pylori. https://doi.org/10.4172/jpb.1000409

  49. Brańka, A. C. (2000). Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Physical Review. E, Statistical physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61, 4769–4773. https://doi.org/10.1103/PHYSREVE.61.4769

    Article  PubMed  Google Scholar 

  50. Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101, 4177–4189. https://doi.org/10.1063/1.467468

  51. Alhazmi, M. I., & Hypothesis. (2015). Molecular docking of selected phytocompounds with H1N1 proteins. Bioinformation, Vol. 11(4), 196.

    Article  Google Scholar 

  52. Ya’u Ibrahim, Z., Uzairu, A., Shallangwa, G., & Abechi, S. (2020). Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Scientific African, 10, e00570. https://doi.org/10.1016/j.sciaf.2020.e00570

    Article  Google Scholar 

  53. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  54. Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. SwissADME Available online: http://www.swissadme.ch/. Accessed 3 Jul 2021.

  56. Hinck, A. P., Archer, S. J., Qian, S. W., Roberts, A. B., Sporn, M. B., Weatherbee, J. A., Tsang, M. L. S., Lucas, R., Zhang, B. L., Wenker, J., et al. (1996). Transforming growth factor β1: Three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry, 35, 8517–8534. https://doi.org/10.1021/BI9604946

    Article  CAS  PubMed  Google Scholar 

  57. Laskowski, R. A., Jabło nska, J., Pravda, L., Svobodov Va rekov, R., & Thornton, J. M. (2017). TOOLS FOR PROTEIN SCIENCE PDBsum: Structural summaries of PDB entries. https://doi.org/10.1002/pro.3289

  58. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. https://doi.org/10.1107/s0021889892009944

    Article  ADS  CAS  Google Scholar 

  59. Hooft, R. W., Vriend, G., & Sander, C. (1996). Abola EE errors in protein structures. Nature, 381, 272.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. SAVESv6.0 - Structure Validation Server Available online: https://saves.mbi.ucla.edu/. Accessed 25 Jun 2021.

  61. PoleboyinA, P. K., & Pawar, S. C. (2022). Identification of ethr inhibitor targeting mycobacterium, tuberculosis: an insight from molecular docking study. Asian Journal of Pharmaceutical and Clinical Research, 15, 145–152. https://doi.org/10.22159/AJPCR.2022.V15I3.43397

  62. Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 1–10.  https://doi.org/10.1038/srep34984

  63. Abe Kawsar, S. M., Hosen, M. A., Masud Rana, K., Mohammad Abe Kawsar, S., Anowar Hosen, M., Sultana Chowdhury, T., Fujii, Y., & Ozeki, Y. (2021). Characterization and computational studies for looking drug targets view project nucleoside & monosaccharide derivatives: synthesis, characterization and computational studies for looking drug targets view project thermochemical, PASS, molecular docking. https://doi.org/10.37358/RC.21.3.8446

  64. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7. https://doi.org/10.1038/SREP42717

  65. Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A. Lipinski’s rule of five, famous extensions and famous exceptions. Popular Science Articles, 3, 171–177.

  66. Lipinski Rule of Five Available online: http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp. Accessed 1 Mar 2023.

  67. Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48, 3164–3170. https://doi.org/10.1021/JM0492002/ASSET

    Article  CAS  PubMed  Google Scholar 

  68. Abdullahi, S. H., Uzairu, A., Shallangwa, G. A., Uba, S., & Umar, A. B. (2022). Computational modeling, ligand-based drug design, drug-likeness and ADMET properties studies of series of chromen-2-ones analogues as anti-cancer agents. Bulletin of the National Research Centre, 2022 461, 1–25. https://doi.org/10.1186/S42269-022-00869-Y

    Article  Google Scholar 

  69. Isyaku, Y., Uzairu, A., & Uba, S. (2020). Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 6, e03724. https://doi.org/10.1016/J.HELIYON.2020.E03724

    Article  PubMed  PubMed Central  Google Scholar 

  70. Daina, A., & Zoete, V. A. (2016) Boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11, 1117–1121. https://doi.org/10.1002/CMDC.201600182

  71. Ibrahim, M. T., Uzairu, A., Shallangwa, G. A., & Uba, S. (2020). In-silico activity prediction and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as Anti-proliferative agents. Heliyon, 6. https://doi.org/10.1016/J.HELIYON.2020.E03158

  72. pkCSM Available online: http://biosig.unimelb.edu.au/pkcsm/prediction. Accessed 7 Jun 2021.

  73. Yeşilkaynak, T., Nur Özkömeç, F., Çeşme, M., Demirdöğen, R. E., Sezer, C. V., Kutlu, H. M., & Emen, F. M. (2023). Novel thiourea derivative compounds: Thermal behavior, biological evaluation, Hirshfeld surfaces and frontier orbitals analyses, in silico ADMET profiling and molecular docking studies. Journal of Molecular Structure, 1280, 135086. https://doi.org/10.1016/J.MOLSTRUC.2023.135086

    Article  Google Scholar 

  74. Scopus preview - Scopus - Document details - hERG K(+) channels: structure, function, and clinical significance. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84866679694&origin=inward&txGid=e8aea4cb13925e662a7133efc74a3ea9. Accessed 4 Mar 2023.

  75. Lokhande, K. B., Tiwari, A., Gaikwad, S., Kore, S., Nawani, N., Wani, M., Swamy, K. V., & Pawar, S. V. (2023). Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Computational Biology and Chemistry, 104, 107829. https://doi.org/10.1016/J.COMPBIOLCHEM.2023.107829

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, H., Luo, H., Shen, Z., Hu, X., Sun, L., & Zhu, X. (2016). Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer. Tumor Biology, 37, 7075–7083. https://doi.org/10.1007/S13277-016-5028-8

    Article  CAS  PubMed  Google Scholar 

  77. Luo, F., Huang, Y., Li, Y., Zhao, X., Xie, Y., Zhang, Q., Mei, J., & Liu, X. (2021). A narrative review of the relationship between TGF-β signaling and gynecological malignant tumor. Annals of Translational Medicine, 9, 1601–1601. https://doi.org/10.21037/ATM-21-4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rudrapal, M., Khairnar, S. J., & Jadhav, A. G. (2020). Drug Repurposing (DR): an emerging approach in drug discovery. Drug repurposing-hypothesis, molecular aspects and therapeutic applications. https://doi.org/10.5772/INTECHOPEN.93193

  79. Arjmand, B., Hamidpour, S. K., Alavi-Moghadam, S., Yavari, H., Shahbazbadr, A., Tavirani, M. R., Gilany, K., & Larijani, B. (2022). Molecular docking as a therapeutic approach for targeting cancer stem cell metabolic processes. Frontiers in Pharmacology, 13. https://doi.org/10.3389/FPHAR.2022.768556

  80. Krishnamoorthy, M., & Balakrishnan, R. (2014). Docking studies for screening anticancer compounds of Azadirachta indica using Saccharomyces cerevisiae as model system. Journal of Natural Science, Biology, and Medicine, 5, 108. https://doi.org/10.4103/0976-9668.127298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Filipe, H. A. L., & Loura, L. M. S. (2022). Molecular dynamics simulations: advances and applications. Molecules, 27, 2105. https://doi.org/10.3390/MOLECULES27072105

  82. Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 1–9. https://doi.org/10.1186/1741-7007-9-71/FIGURES/4

    Article  Google Scholar 

  83. Nilotinib: MedlinePlus Drug Information Available online: https://medlineplus.gov/druginfo/meds/a608002.html. Accessed 16 Mar 2023.

  84. E, J., JE, C., H, G., S, O., & HM, K. (2008). Targeted therapy in chronic myeloid leukemia. Expert Review of Anticancer Therapy, 8, 99–110. https://doi.org/10.1586/14737140.8.1.99

    Article  Google Scholar 

  85. Kantarjian, H. M., Giles, F., Gattermann, N., Bhalla, K., Alimena, G., Palandri, F., Ossenkoppele, G. J., Nicolini, F. E., O’Brien, S. G., Litzow, M., et al. (2007). Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood, 110, 3540–3546. https://doi.org/10.1182/BLOOD-2007-03-080689

    Article  CAS  PubMed  Google Scholar 

  86. Chahal, K. K., Li, J., Kufareva, I., Parle, M., Durden, D. L., Wechsler-Reya, R. J., Chen, C. C., & Abagyan, R. (2019). Nilotinib, an approved leukemia drug, inhibits smoothened signaling in hedgehog-dependent medulloblastoma. PLoS One, 14. https://doi.org/10.1371/JOURNAL.PONE.0214901

Download references

Acknowledgements

Thankful to the Department of Genetics & Biotechnology, Osmania University and Department of Bioinformatics, SVIMS University for providing the Bioinformatics/software facilities.

Funding

This study was supported by grants of Prof. Smita C. Pawar received from the Science and Engineering Research Board(SERB), Govt. of India, reference Nos. SB/EMEQ-471/2014and EEQ/2019/000569 dt 06-Jan-2020, and the fellowship was provided by CSIR-UGC to Pavan Kumar Poleboyina & Akbar Pasha, ICMR to Shivaji Bhanothu & Sneha Malleswari Poleboyina. The facilities were partially provided by DSTPURSE-II.

Author information

Authors and Affiliations

Authors

Contributions

Smita C Pawar & Pavan Kumar Poleboyina conceptualized, designed interpreted data, and edited the manuscript; Pavan Kumar Poleboyina, UmaKanth Naik, UmaMaheshwari Amineni, Akbar Pasha, Doneti Ravinder, Shivaji Bhanothu, Sneha Malleswari Poleboyina designed and conducted the study. All authors have approved the manuscript in its current form.

Corresponding author

Correspondence to Smita C. Pawar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest. No additional benefits will be received from a third party directly or indirectly by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poleboyina, P.K., Naik, U., Pasha, A. et al. Virtual Screening, Molecular Docking, and Dynamic Simulations Revealed TGF-β1 Potential Inhibitors to Curtail Cervical Cancer Progression. Appl Biochem Biotechnol 196, 1316–1349 (2024). https://doi.org/10.1007/s12010-023-04608-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04608-5

Keywords

Navigation