Skip to main content
Log in

Green One-Step Synthesis of Silver Nanoparticles Obtained from Schinus areira Leaf Extract: Characterization and Antibacterial Mechanism Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data generated or analyzed during this study are included in this published article (and its supplementary information files). Row data generated will be available from the authors upon reasonable request.

References

  1. Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10, 339–354. https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  2. Rodrigues, G. R., López-Abarrategui, C., de la Serna, G. I., Dias, S. C., Otero-González, A. J., & Franco, O. L. (2019). Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. International Journal of Pharmaceutics, 555, 356–367.

    Article  CAS  PubMed  Google Scholar 

  3. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12, 1531–1551. https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  ADS  Google Scholar 

  5. Halbus, A. F., Horozov, T. S., & Paunov, V. N. (2017). Colloid particle formulations for antimicrobial applications. Advances in Colloid and Interface Science, 249, 134–148. https://doi.org/10.1016/j.cis.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  6. Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B., & Fromm, K. M. (2013). Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews, 113, 4708–4754. https://doi.org/10.1021/cr300288v

    Article  CAS  PubMed  Google Scholar 

  7. Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44, 5778–5792. https://doi.org/10.1039/c4cs00363b

    Article  CAS  PubMed  Google Scholar 

  8. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650. https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  9. Dzul-Erosa, M. S., Cauich-Díaz, M. M., Razo-Lazcano, T. A., Avila-Rodriguez, M., Reyes-Aguilera, J. A., & González-Muñoz, M. P. (2018). Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatán México. Part II: Uses for the phytomediated synthesis of silver nanoparticles. Materials Science and Engineering: C, 91, 838–52. https://doi.org/10.1016/j.msec.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12, 3576–3600.

    Article  CAS  Google Scholar 

  11. Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., et al. (2021). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review” (Biotechnology Reports (2020) 25, (S2215017X19305934), (10.1016/j.btre.2020.e00427)). Biotechnol Reports, 29, e00427. https://doi.org/10.1016/j.btre.2020.e00578

    Article  CAS  Google Scholar 

  12. Gallucci, M. N., Fraire, J. C., FerreyraMaillard, A. P. V., Páez, P. L., Aiassa Martínez, I. M., Pannunzio Miner, E. V., et al. (2017). Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity. Materials Letters, 197, 98–101. https://doi.org/10.1016/j.matlet.2017.03.141

    Article  CAS  Google Scholar 

  13. FerreyraMaillard, A. P. V., Dalmasso, P. R., López de Mishima, B. A., & Hollmann, A. (2018). Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity. Colloids Surfaces B Biointerfaces, 171, 320–6. https://doi.org/10.1016/j.colsurfb.2018.07.044

    Article  CAS  Google Scholar 

  14. Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., et al. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles — An ecofriendly approach. International Journal of Nanomedicine, 14, 5087–5107. https://doi.org/10.2147/IJN.S200254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oves, M., Rauf, M. A., Aslam, M., Qari, H. A., Sonbol, H., Ahmad, I., et al. (2022). Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi Journal of Biological Sciences, 29, 460–471.

    Article  CAS  PubMed  Google Scholar 

  16. Mohamad, N. A. N., Arham, N. A., Jai, J., Hadi, A. (2014). Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Advanced Materials Research 832, Trans Tech Publ; p. 350–5

  17. Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., et al. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artificial Cells, Nanomedicine, and Biotechnology, 46, S336–S343. https://doi.org/10.1080/21691401.2018.1492931

    Article  CAS  PubMed  Google Scholar 

  18. Woo, K. J., Hye, C. K., Ki, W. K., Shin, S., So, H. K., & Yong, H. P. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environment Microbiology, 74, 2171–2178. https://doi.org/10.1128/AEM.02001-07

    Article  CAS  ADS  Google Scholar 

  19. Franke, S., Grass, G., & Nies, D. H. (2001). The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology, 147, 965–972. https://doi.org/10.1099/00221287-147-4-965

    Article  CAS  PubMed  Google Scholar 

  20. Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22, 7202. https://doi.org/10.3390/IJMS22137202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmad, A., Wei, Y., Syed, F., Tahir, K., Rehman, A. U., Khan, A., et al. (2017). The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102, 133–142. https://doi.org/10.1016/j.micpath.2016.11.030

    Article  CAS  PubMed  Google Scholar 

  22. Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., et al. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 8, 374–386.

    Article  CAS  PubMed  Google Scholar 

  23. Niazi, J. H., Sang, B.-I., Kim, Y. S., & Gu, M. B. (2011). Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles. Applied Biochemistry and Biotechnology, 164, 1278–1291.

    Article  CAS  PubMed  Google Scholar 

  24. Cutro, A. C., Castelli, M. V., López, S. N., Rosales, M. A., Hollmann, A., & Rodriguez, S. A. (2021). Chemical composition of Schinus areira essential oil and antimicrobial action against Staphylococcus aureus. Natural Product Research, 35, 2931–2936. https://doi.org/10.1080/14786419.2019.1675065

    Article  CAS  PubMed  Google Scholar 

  25. Barboza, G.,E., Cantero, J., Nuñez, C., Ariza, L. (2006). Flora medicinal de la provincia de Córdoba (Argentina) : Pteridófitas y antófitas silvestres o naturalizadas. Museo Botánico Córdoba.

  26. Sandberg, F. (1996). 270 Plantas medicinales Ibero-americanas. 53. https://doi.org/10.1016/0378-8741(96)01417-1

  27. Lahitte, H. B., Hurrel, J. A., Belgrano, M. J., Jankowiski, L., Halona, P., Mehltreter, K. (1998). Plantas medicinales Rioplatenses. Buenos Aires, LOLA, 240.

  28. Lim, T. K. (2012). Schinus molle. In: Lim TK (ed). Edible med. non-medicinal plants, Dordrecht: Springer Netherlands, p. 153–9. https://doi.org/10.1007/978-90-481-8661-7_21.

  29. Mares-Briones, F., & Rosas, G. (2017). Structure and stability of gold nanoparticles synthesized using Schinus molle L. Extract. Journal of Cluster Science, 28, 1995–2003. https://doi.org/10.1007/s10876-017-1197-x

    Article  CAS  Google Scholar 

  30. Barberia-Roque, L., Gámez-Espinosa, E., Viera, M., & Bellotti, N. (2019). Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings. International Biodeterioration and Biodegradation, 141, 52–61. https://doi.org/10.1016/j.ibiod.2018.06.011

    Article  CAS  Google Scholar 

  31. Provencher, S. W. (1982). A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Physics Communications, 27, 213–227. https://doi.org/10.1016/0010-4655(82)90173-4

    Article  ADS  Google Scholar 

  32. Provencher, S. W. (1982). CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Physics Communications, 27, 229–242. https://doi.org/10.1016/0010-4655(82)90174-6

    Article  ADS  Google Scholar 

  33. National Committee for Clinical Laboratory Standards N. (2015). M02–A12: Performance standards for antimicrobial disk susceptibility tests; approved standard —Twelfth Edition. Clinical and Laboratory Standards Institute, 35, 73.

    Google Scholar 

  34. Dong, N., Zhu, X., Chou, S., Shan, A., Li, W., & Jiang, J. (2014). Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials, 35, 8028–8039. https://doi.org/10.1016/j.biomaterials.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  35. Loh, B., Grant, C., & Hancock, R. E. W. (1984). Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 26, 546–551. https://doi.org/10.1128/AAC.26.4.546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, C., Li, J., Yang, L., Shi, F., Yang, L., & Ye, M. (2017). Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control, 73, 1445–1451. https://doi.org/10.1016/j.foodcont.2016.10.048

    Article  CAS  Google Scholar 

  37. Halder, S., Yadav, K. K., Sarkar, R., Mukherjee, S., Saha, P., Haldar, S., et al. (2015). Alteration of zeta potential and membrane permeability in bacteria: A study with cationic agents. Springerplus, 4, 1–14. https://doi.org/10.1186/s40064-015-1476-7

    Article  CAS  Google Scholar 

  38. Guven, K., Yolcu, M., Gul-Guven, R., Erdogan, S., & De Pomerai, D. (2005). The effects of organic pesticides on inner membrane permeability in Escherichia coli ML35. Cell Biology and Toxicology, 21, 73–81. https://doi.org/10.1007/s10565-005-0123-4

    Article  CAS  PubMed  Google Scholar 

  39. Espeche, J. C., Martínez, M., Maturana, P., Cutró, A., Semorile, L., Maffia, P. C., et al. (2020). Unravelling the mechanism of action of “de novo” designed peptide P1 with model membranes and gram-positive and gram-negative bacteria. Archives of Biochemistry and Biophysics, 693, 108549. https://doi.org/10.1016/j.abb.2020.108549

    Article  CAS  PubMed  Google Scholar 

  40. Van Acker, H., & Coenye, T. (2017). The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology, 25, 456–466.

    Article  PubMed  Google Scholar 

  41. Shukla, M. K., Singh, R. P., Reddy, C. R. K., & Jha, B. (2012). Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresource Technology, 107, 295–300. https://doi.org/10.1016/j.biortech.2011.11.092

    Article  CAS  PubMed  Google Scholar 

  42. Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc, 135, 373–378. https://doi.org/10.1016/j.saa.2014.07.045

    Article  CAS  ADS  Google Scholar 

  43. Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surfaces B Biointerfaces, 82, 152–159. https://doi.org/10.1016/j.colsurfb.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  44. Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochim Acta - Part A Mol Biomol Spectrosc, 146, 286–291. https://doi.org/10.1016/j.saa.2015.02.058

    Article  CAS  ADS  Google Scholar 

  45. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  46. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., et al. (2014). Green’ nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vidhu, V. K., Aromal, S. A., & Philip, D. (2011). Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim Acta - Part A Mol Biomol Spectrosc, 83, 392–397. https://doi.org/10.1016/j.saa.2011.08.051

    Article  CAS  ADS  Google Scholar 

  48. Singh, A., Sharma, B., & Deswal, R. (2018). Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. Journal of Trace Elements in Medicine and Biology, 47, 1–11. https://doi.org/10.1016/j.jtemb.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  49. Selvakumar, P., Sithara, R., Viveka, K., & Sivashanmugam, P. (2018). Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. Journal of Photochemistry and Photobiology, B: Biology, 182, 52–61. https://doi.org/10.1016/j.jphotobiol.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  50. Souza, T. G. F., Ciminelli, V. S. T., & Mohallem, N. D. S. (2016). A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. Journal of Physics: Conference Series, 733, 12039. https://doi.org/10.1088/1742-6596/733/1/012039

    Article  CAS  Google Scholar 

  51. Diegoli, S., Manciulea, A. L., Begum, S., Jones, I. P., Lead, J. R., & Preece, J. A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment, 402, 51–61.

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Hinterwirth, H., Wiedmer, S. K., Moilanen, M., Lehner, A., Allmaier, G., Waitz, T., et al. (2013). Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. Journal of Separation Science, 36, 2952–2961. https://doi.org/10.1002/jssc.201300460

    Article  CAS  PubMed  Google Scholar 

  53. Kora, A. J., Arunachalam, J. (2012). Green fabrication of silver nanoparticles by gum tragacanth (astragalus gummifer): A dual functional reductant and stabilizer. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/869765.

  54. Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 75103. https://doi.org/10.1088/0957-4484/19/7/075103

    Article  CAS  Google Scholar 

  55. Hayouni, E. A., Chraief, I., Abedrabba, M., Bouix, M., Leveau, J. Y., Mohammed, H., et al. (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. International Journal of Food Microbiology, 125, 242–51. https://doi.org/10.1016/j.ijfoodmicro.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  56. Xu, H., Qu, F., Xu, H., Lai, W., Wang, Y. A., Aguilar, Z. P., et al. (2012). Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157: H7. BioMetals, 25, 45–53.

    Article  CAS  PubMed  Google Scholar 

  57. Quinteros, M. A., Cano Aristizábal, V., Dalmasso, P. R., Paraje, M. G., & Páez, P. L. (2016). Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicology in Vitro, 36, 216–223. https://doi.org/10.1016/j.tiv.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  58. Garuglieri, E., Cattò, C., Villa, F., Zanchi, R., & Cappitelli, F. (2016). Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions. Biointerphases, 11, 04B308. https://doi.org/10.1116/1.4972100

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, L., Wu, L., Mi, Y., & Si, Y. (2019). Silver nanoparticles induced cell apoptosis, membrane damage of Azotobacter vinelandii and Nitrosomonas europaea via generation of reactive oxygen species. Bulletin of Environmental Contamination and Toxicology, 103, 181–6. https://doi.org/10.1007/S00128-019-02622-0

    Article  CAS  PubMed  Google Scholar 

  60. Li, X., Lenhart, J. J., & Walker, H. W. (2010). Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 26, 16690–16698. https://doi.org/10.1021/la101768n

    Article  CAS  PubMed  Google Scholar 

  61. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Martinez, M., Gonçalves, S., Felício, M. R., Maturana, P., Santos, N. C., Semorile, L., et al. (2019). Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1861, 1329–1337. https://doi.org/10.1016/j.bbamem.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  63. Maturana, P., Gonçalves, S., Martinez, M., Espeche, J. C., Santos, N. C., Semorile, L., et al. (2020). Interactions of “de novo” designed peptides with bacterial membranes: Implications in the antimicrobial activity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862, 183443. https://doi.org/10.1016/j.bbamem.2020.183443

    Article  CAS  PubMed  Google Scholar 

  64. Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nature Reviews Microbiology, 13, 605–619. https://doi.org/10.1038/nrmicro3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8, 4963–76.

    Article  CAS  Google Scholar 

  66. Xu, L., Wang, Y.-Y., Huang, J., Chen, C.-Y., Wang, Z.-X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10, 8996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., et al. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13, 65–71. https://doi.org/10.1038/s41565-017-0013-y

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

Raman spectra were obtained through “Sistema Nacional de Microscopía – Argentina” in equipment located in INBIONATEC-CONICET. The author also acknowledges Dr. Jorge Gomes Rojas for Raman spectra acquisitions. AC, PRD, and AH are members of the Research Career of CONICET. AFM and AB acknowledged their fellowship from CONICET, and AB also acknowledged her fellowship from Universidad Nacional de Santiago del Estero.

Funding

This work received financial support from ANPCyT-FONCyT: PICT 2017–2349 (Dr. Hollmann); PICT 2018–03862 (Dr. Dalmasso); Universidad Nacional de Santiago del Estero: PI-UNSE 23A/250 (Dr. Hollmann); and Universidad Tecnológica Nacional: PID IPUTICO0005300TC and PID PAECBCO0008294TC (Dr. Dalmasso.

Author information

Authors and Affiliations

Authors

Contributions

Anike P. V. Ferreyra Maillard and Anahí Bordón: conceptualization and methodology; Andrea C. Cutro: methodology; Pablo R. Dalmasso: conceptualization, writing — review and editing, and funding acquisition; and Axel Hollmann: conceptualization, writing — original draft, supervision, and funding acquisition.

Corresponding authors

Correspondence to Pablo R. Dalmasso or Axel Hollmann.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreyra Maillard, A.P.V., Bordón, A., Cutro, A.C. et al. Green One-Step Synthesis of Silver Nanoparticles Obtained from Schinus areira Leaf Extract: Characterization and Antibacterial Mechanism Analysis. Appl Biochem Biotechnol 196, 1104–1121 (2024). https://doi.org/10.1007/s12010-023-04591-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04591-x

Keywords

Navigation