Skip to main content

Advertisement

Log in

Influence of Borassus flabellifer Endocarps Hydrolysate on Fungal Biomass and Fatty Acids Production by the Marine Fungus Aspergillus sp.

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyunsaturated Fatty Acids (PUFAs) are important nutrients for human health. We aimed to evaluate the efficiency of marine water fungus Aspergillus sp. (Accession no: MZ505709) for lipid biosynthesis. The Yeast Extract Glucose (YEG) medium was supplemented with different concentration of Borassus flabellifer Endocarps Hydrolysate (BFEH; 1–5%) to evaluate the fungal biomass and its lipid accumulation. The combination of glucose and BFEH as carbon source increased the fresh weight (25.43 ± 0.33 g/L), dry weight (21.39 ± 0.77 g/L) and lipid yield (3.14 ± 0.09 g/L) of fungal biomass. The lipid content of dried fungal biomass has shown 91.08 ± 5.07 mg cod liver oil equivalents/g and 125.98 ± 5.96 mg groundnut oil equivalents/g biomass. GC-MS and NMR spectrometry analysis revealed the compounds involved in fatty acid metabolism and lipid signaling pathways along with the presence of linolenic acid. Interestingly, fungus grown in BFEH enriched medium has recorded the maximum amount of lipids with major fatty acid derivatives. Increase in the growth rate of Artemia franciscana was observed, when the extracted fungal lipid was supplemented as a food supplement. Therefore, this study suggests that marine fungal lipid may serve as potential natural compound as nutraceuticals and aquafeeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2012). Harper’s Illustrated Biochemistry (29,29th ed.,.). Toronto, Canada: McGraw-Hill Education.

    Google Scholar 

  2. Ji, X. J., & Huang, H. (2019). Engineering microbes to produce polyunsaturated fatty acids. Trends in Biotechnology, 37(4), 344–346.

    Article  CAS  PubMed  Google Scholar 

  3. Bellou, S., Triantaphyllidou, I. E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24–35.

    Article  CAS  PubMed  Google Scholar 

  4. Ji, X. J., & Ledesma-Amaro, R. (2020). Microbial lipid biotechnology to produce polyunsaturated fatty acids. Trends in Biotechnology, 38(8), 832–834.

    Article  CAS  PubMed  Google Scholar 

  5. Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable & Sustainable Energy Reviews, 107, 250–263.

    Article  Google Scholar 

  6. Mullis, M. M., Rambo, I. M., Baker, B. J., & Reese, B. K. (2019). Diversity, ecology, and prevalence of antimicrobials in nature. Frontiers in Microbiology, 2518.

  7. Baenke, F., Peck, B., Miess, H., & Schulze, A. (2013). Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Disease Models and Mechanisms, 6(6), 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deeba, F., Pruthi, V., & Negi, Y. S. (2018). Aromatic hydrocarbon biodegradation activates neutral lipid biosynthesis in oleaginous yeast. Bioresource Technology, 255, 273–280.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, S., & Gaur, S. (2021). Fungal byproducts in food technology. Fungi in sustainable Food production (pp. 1–17). Cham: Springer.

    Google Scholar 

  10. Vivek, N., Sindhu, R., Madhavan, A., Anju, A. J., Castro, E., Faraco, V., Pandey, A., & Binod, P. (2017). Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–metabolic aspects, challenges and possibilities: An overview. Bioresource Technology, 239, 507–517.

    Article  CAS  PubMed  Google Scholar 

  11. Patel, A., Mikes, F., & Matsakas, L. (2018). An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules, 23(7), 1562.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sudhakara, P., Obi Reddy, K., Prasad, C. V., Jagadeesh, D., Kim, H. S., Kim, B. S., Bae, S. I., & Song, J. I. (2013). Studies on Borassus fruit fiber and its composites with polypropylene. Composites Research, 26(1), 48–53.

    Article  Google Scholar 

  13. Méndez-Martínez, Y., García-Guerrero, M. U., Lora-Vilchis, M. C., Martínez-Córdova, L. R., Arcos-Ortega, F. G., Alpuche, J. J., & Cortés-Jacinto, E. (2018). Nutritional effect of Artemia nauplii enriched with Tetraselmis suecica and Chaetoceros calcitrans microalgae on growth and survival on the river prawn Macrobrachium americanum larvae. Aquaculture International, 26(4), 1001–1015.

    Article  Google Scholar 

  14. Alwakeel, S. S. (2017). Molecular identification of fungi isolated from coastal regions of Red Sea, Jeddah, Saudi Arabia. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 115–119.

    Article  Google Scholar 

  15. Zhang, Y., & Song, Y. (2021). Lipid accumulation by xylose metabolism engineered Mucor circinelloides strains on corn straw hydrolysate. Applied Biochemistry Biotechnology, 193(3), 856–868.

    Article  PubMed  Google Scholar 

  16. Ali, T. H., El-Gamal, M. S., El-Ghonemy, D. H., Awad, G. E., & Tantawy, A. E. (2017). Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. Annals of Microbiology, 67(9), 601–613.

    Article  CAS  Google Scholar 

  17. Singh, A., Chaudhari, A. K., Das, S., & Dubey, N. K. (2020). Nanoencapsulated Monarda citriodora Cerv. Ex lag. Essential oil as potential antifungal and antiaflatoxigenic agent against deterioration of stored functional foods. Journal of Food Science and Technology, 57(8), 2863–2876.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Devi, P., D’Souza, L., Kamat, T., Rodrigues, C., & Naik, C. G. (2009). Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin. Indian Journal of Marine Sciences, 38, 38–44.

    CAS  Google Scholar 

  19. Kamoun, O., Ayadi, I., Guerfali, M., Belghith, H., Gargouri, A., & Trigui-Lahiani, H. (2018). Fusarium verticillioides as a single-cell oil source for biodiesel production and dietary supplements. Process Safety and Environmental Protection, 118, 68–78.

    Article  CAS  Google Scholar 

  20. Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    Article  CAS  PubMed  Google Scholar 

  21. Bardhan, P., Gohain, M., Daimary, N., Kishor, S., Chattopadhyay, P., Gupta, K., Chaliha, C., Kalita, E., Deka, D., & Mandal, M. (2019). Microbial lipids from cellulolytic oleaginous fungus Penicillium citrinum PKB20 as a potential feedstock for biodiesel production. Annals of Microbiology, 69(11), 1135–1146.

    Article  CAS  Google Scholar 

  22. Hartman, L., & Lago, R. C. (1973). Rapid preparation of fatty acid methyl esters from lipids. Laboratory practice, 22, 475–476.

    CAS  PubMed  Google Scholar 

  23. Manickam, N., Bhavan, P. S., Santhanam, P., & Muralisankar, T. (2020). Influence of wild mixed zooplankton on growth and muscle biochemical composition of the freshwater prawn Macrobrachium rosenbergii post larvae. Aquaculture, 522, 735110.

    Article  CAS  Google Scholar 

  24. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    Article  CAS  PubMed  Google Scholar 

  25. Pasqualetti, M., Giovannini, V., Barghini, P., Gorrasi, S., & Fenice, M. (2020). Diversity and ecology of culturable marine fungi associated with Posidonia oceanica leaves and their epiphytic algae Dictyota dichotoma and Sphaerococcus coronopifolius. Fungal Ecology, 44, 100906.

    Article  Google Scholar 

  26. Li, H. L., Yang, S. Q., Li, X. M., Li, X., & Wang, B. G. (2021). Structurally diverse alkaloids produced by Aspergillus creber EN-602, an endophytic fungus obtained from the marine red alga Rhodomela confervoides. Bioorganic Chemistry, 110, 104822.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, M. V., Han, J. W., Kim, H., & Choi, G. J. (2022). Phenyl Ethers from the Marine-Derived Fungus Aspergillus tabacinus and their antimicrobial activity against Plant pathogenic Fungi and Bacteria. ACS omega, 7(37), 33273–33279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monsoor, M. A. (2005). Effect of drying methods on the functional properties of soy hull pectin. Carbohydrate polymers, 61(3), 362–367.

    Article  CAS  Google Scholar 

  29. Sidi-Yacoub, B., Oudghiri, F., Belkadi, M., & Rodríguez-Barroso, R. (2019). Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Journal of Thermal Analysis and Calorimetry, 138(2), 1801–1809.

    Article  CAS  Google Scholar 

  30. Mishra, R. K., & Mohanty, K. (2018). Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conversion and Biorefinery, 8(4), 799–812.

    Article  CAS  Google Scholar 

  31. Danielewicz, D., Kmiotek, M., & Surma-Ślusarska, B. (2019). Study of ionic liquids UV-VIS and FTIR spectra before and after heating and spruce groundwood dissolution. Fibres and Textiles in Eastern Europe, 27(1(133), 118–123.

    Article  CAS  Google Scholar 

  32. Estupiñán Méndez, D., & Allscher, T. (2022). Advantages of external reflection and transflection over ATR in the Rapid Material characterization of negatives and Films via FTIR Spectroscopy. Polymers, 14(4), 808.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng, Y., Yu, X., Zeng, J., & Chen, S. (2012). Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnology for Biofuels, 5(1), 1–10.

    Article  Google Scholar 

  34. Gao, D., Zeng, J., Zheng, Y., Yu, X., & Chen, S. (2013). Microbial lipid production from xylose by Mortierella isabellina. Bioresource Technology, 133, 315–321.

    Article  CAS  PubMed  Google Scholar 

  35. Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., & Kamiński, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules, 23(11), 2937.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2), 309.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dzurendova, S., Zimmermann, B., Tafintseva, V., Kohler, A., Ekeberg, D., & Shapaval, V. (2020). The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Applied Microbiology and Biotechnology, 104(18), 8065–8076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, X., Xia, K., Yang, X., & Tang, C. (2019). Growth strategy of microbes on mixed carbon sources. Nature Communications, 10(1), 1–7.

    ADS  Google Scholar 

  39. Subhash, G. V., & Mohan, S. V. (2014). Lipid accumulation for biodiesel production by oleaginous fungus aspergillus awamori: Influence of critical factors. Fuel, 116, 509–515.

    Article  Google Scholar 

  40. Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource technology, 102(20), 9737–9742.

    Article  CAS  PubMed  Google Scholar 

  41. Kimura, K., Yamaoka, M., & Kamisaka, Y. (2004). Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. Journal of Microbiological Methods, 56(3), 331–338.

    Article  CAS  PubMed  Google Scholar 

  42. Ali, S. S., Al-Tohamy, R., Koutra, E., Kornaros, M., Khalil, M., Elsamahy, T., El-Shetehy, M., & Sun, J. (2021). Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for Biofuels, 14(1), 1–25.

    Article  Google Scholar 

  43. Li, Z., Zhou, Q. X., Li, Q. L., Liu, M. Y., Zhou, Z. Y., & Li, H. G. (2019). Overview on efficient methods for the determination of Microalgae lipid content. Biotechnology Bulletin, 35(12), 189.

    Google Scholar 

  44. McMahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48(5), 513–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khazaeli, P., Alaei, M., Khaksarihadad, M., & Ranjbar, M. (2020). Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study. Journal of Nanobiotechnology, 18(1), 1–9.

    Article  Google Scholar 

  46. Devi, A., & Khatkar, B. S. (2018). Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality. Journal of Food Science and Technology, 55(1), 321–330.

    Article  CAS  PubMed  Google Scholar 

  47. Dien, B. S., Slininger, P. J., Kurtzman, C. P., Moser, B. R., & O’Bryan, P. J. (2016). Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environmental Science, 3(1), 1–20.

    Article  CAS  Google Scholar 

  48. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333.

    Article  CAS  PubMed  Google Scholar 

  49. Dini, I., Marra, R., Cavallo, P., Pironti, A., Sepe, I., Troisi, J., Scala, G., Pasquale, L., & Vinale, F. (2021). Trichoderma strains and metabolites selectively increase the production of volatile organic compounds (VOCs) in olive trees. Metabolites, 11(4), 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kennedy, D. O., Jackson, P. A., Elliott, J. M., Scholey, A. B., Robertson, B. C., Greer, J., Tiplady, B., Buchanan, T., & Haskell, C. F. (2009). Cognitive and mood effects of 8 weeks’ supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10–12 years. Nutritional Neuroscience, 12(2), 48–56.

    Article  CAS  PubMed  Google Scholar 

  51. Patel, A., Antonopoulou, I., Enman, J., Rova, U., Christakopoulos, P., & Matsakas, L. (2019). Lipids detection and quantification in oleaginous microorganisms: An overview of the current state of the art. BMC Chemical Engineering, 1(1), 1–25.

    Article  Google Scholar 

  52. Pollesello, P., Toffanin, R., Murano, E., Paoletti, S., Rizzo, R., & Kvam, B. J. (1992). Lipid extracts from different algal species: 1H and13C-NMR spectroscopic studies as a new tool to screen differences in the composition of fatty acids, sterols and carotenoids. Journal of Applied Phycology, 4(4), 315–322.

    Article  CAS  Google Scholar 

  53. Subramaniam, R., Dufreche, S., Zappi, M., & Bajpai, R. (2010). Microbial lipids from renewable resources: Production and characterization. Journal of Industrial Microbiology and Biotechnology, 37, 1271–1287.

    Article  CAS  PubMed  Google Scholar 

  54. Thangal, S. H., Nivetha, M., Muttharasi, C., Anandhan, K., & Muralisankar, T. (2021). Effects of acidified seawater on biological and physiological responses of Artemia franciscana. Marine Pollution Bulletin, 169, 112476.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, J., & Thompson, C. B. (2019). Metabolic regulation of cell growth and proliferation. Nature Reviews Molecular Cell Biology, 20(7), 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Herpen, N. A., & Schrauwen-Hinderling, V. B. (2008). Lipid accumulation in non-adipose tissue and lipotoxicity. Physiology & Behavior, 94(2), 231–241.

    Article  Google Scholar 

  57. Turcihan, G., Turgay, E., Yardımcı, R. E., & Eryalçın, K. M. (2021). The effect of feeding with different microalgae on survival, growth, and fatty acid composition of Artemia franciscana metanauplii and on predominant bacterial species of the rearing water. Aquaculture International, 29(5), 2223–2241.

    Article  CAS  Google Scholar 

  58. Ding, L., Zhang, L., Wang, J., Ma, J., Meng, X., Duan, P., Sun, L., & Sun, Y. (2010). Effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture Research, 41(10), 1470–1478.

    CAS  Google Scholar 

  59. Muttharasi, C., Gayathri, V., Muralisankar, T., Mohan, K., Uthayakumar, V., Radhakrishnan, S., Kumar, P., & Palanisamy, M. (2021). Growth performance, digestive enzymes and antioxidants activities in the shrimp Litopenaeus vannamei fed with Amphiroa fragilissima crude polysaccharides encapsulated Artemia nauplii. Aquaculture, 545, 737263.

    Article  CAS  Google Scholar 

  60. Omeke, J. N., Anaga, A. O., & Okoye, J. A. (2018). Brine shrimp lethality and acute toxicity tests of different hydro-methanol extracts of Anacardium occidentale using in vitro and in vivo models: A preliminary study. Comparative Clinical Pathology, 27(6), 1717–1721.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the (UGC-SAP), New Delhi, and DST-FIST II Programme, Department of Botany for providing the financial support to carry out the research work. The authors are thankful to National Higher Education Mission (RUSA 2.0- BEICH), New Delhi, to carry out the research work fruitfully.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Work design, conceptualization and writing the manuscript was performed by Gurusaravanan Packiaraj, Nancy Mary Thomas and Vasanthkumar Rajkumar. Equal contribution to the work was given by Muralisankar Thirunavukarasu, Saradhadevi Muthukrishnan and Gayathri Velusamy. Data validation and analysis were performed by Vinoth Sathasivam and Arun Muthukrishnan. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gurusaravanan Packiaraj.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals or human participants.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N.M., Sathasivam, V., Thirunavukarasu, M. et al. Influence of Borassus flabellifer Endocarps Hydrolysate on Fungal Biomass and Fatty Acids Production by the Marine Fungus Aspergillus sp.. Appl Biochem Biotechnol 196, 923–948 (2024). https://doi.org/10.1007/s12010-023-04588-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04588-6

Keywords

Navigation