Skip to main content
Log in

Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus Niger xj

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Six compounds were isolated and purified from the crude acetone extract of Aspergillus niger xj. Characterization of all compounds was done by NMR and MS. On the basis of chemical and spectral analysis structure, six compounds were elucidated as metazachlor (1), nonacosane (2), palmitic acid (3), 5,5’-oxybis(5-methylene-2-furaldehyde) (4), dimethyl 5-nitroisophthalate (5) and cholesta-3,5-dien-7-one (6), respectively, and compounds 1, 4, 5 and 6 were isolated for the first time from A. niger. To evaluate the antibacterial activity of compounds 1–6 against three plant pathogenic bacteria (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2), and the minimum inhibitory concentrations (MICs) were determined by broth microdilution method in 96-well microtiter plates. Results of the evaluation of the antibacterial activity showed that T-37 strain was more susceptible to metazachlor with the lowest MIC of 31.25 µg/mL. The antibacterial activity of metazachlor has rarely been reported, thus the antibacterial mechanism of metazachlor against T-37 strain were investigated. The permeability of cell membrane demonstrated that cells membranes were broken by metazachlor, which caused leakage of ions in cells. SDS-PAGE of T-37 proteins indicated that metazachlor could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy results showed obvious morphological and ultrastructural changes in the T-37 cells, further confirming the cell membrane damages caused by metazachlor. Overall, our findings demonstrated that the ability of metazachlor to suppress the growth of T-37 pathogenic bacteria makes it potential biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

MIC:

Minimum inhibitory concentration

PDA:

Potato dextrose agar

PDB:

Potato dextrose broth

LB:

Luria-Bertani

CC:

Column chromatography

TLC:

Thin layer chromatography

DMSO:

Dimethyl sulfoxide

CPL:

Chloramphenicol

LC-MS:

Liquid Chromatograph Mass Spectrometer

EI-MS:

Electron ionization mass spectrometry

NMR:

Nuclear magnetic resonance

EC50 :

Half maximal effective concentration

SEM:

Scanning electron microscopy

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  1. Gugnani, H. (2003). Ecology and taxonomy of pathogenic aspergilli. Frontiers in bioscience, 8, s346–s357. https://doi.org/10.2741/1002.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, C., Sarotti, A. M., Zaman, K. A. U., Wu, X., & Cao, S. (2021). New Alkaloids from a hawaiian fungal strain aspergillus felis FM324. Frontiers in chemistry, 9, 724617. https://doi.org/10.3389/fchem.2021.724617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J. M. (2000). Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technology, 74(2), 175–178. https://doi.org/10.1016/S0960-8524(99)00107-8.

    Article  CAS  Google Scholar 

  4. Zaman, K. A. U., Hu, Z., Wu, X., Hou, S., Saito, J., Kondratyuk, T., Pezzuto, J., & Cao, S. (2020). NF-κB inhibitory and antibacterial helvolic and fumagillin derivatives from aspergillus terreus. Journal Of Natural Products, 83. https://doi.org/10.1021/acs.jnatprod.9b01190.

  5. Bromann, K., Viljanen, K., Moreira, V., Yli-Kauhaluoma, J., Ruohonen, L., & Nakari-Setälä, T. (2014). Isolation and purification of ent-Pimara-8(14),15-diene from Engineered Aspergillus nidulans by accelerated solvent extraction combined with HPLC. Analytical Methods, 6, 1227–1234. https://doi.org/10.1039/C3AY41640B.

    Article  CAS  Google Scholar 

  6. Li, D. H., Han, T., Guan, L. P., Bai, J., Zhao, N., Li, Z. L., Wu, X., & Hua, H. M. (2016). New naphthopyrones from marine-derived fungus aspergillus niger 2HL-M-8 and their in vitro antiproliferative activity. Natural Product Research, 30(10), 1116–1122. https://doi.org/10.1080/14786419.2015.1043553.

    Article  CAS  PubMed  Google Scholar 

  7. Mohamed, G. A., Ibrahim, S. R. M., & Asfour, H. Z. (2020). Antimicrobial metabolites from the endophytic fungus Aspergillus versicolor. Phytochemistry Letters, 35, 152–155. https://doi.org/10.1016/j.phytol.2019.12.003.

    Article  CAS  Google Scholar 

  8. Wang, C., Tang, S., & Cao, S. (2021). Antimicrobial compounds from marine fungi. Phytochemistry Reviews, 20(1), 85–117. https://doi.org/10.1007/s11101-020-09705-5.

    Article  CAS  Google Scholar 

  9. Xie, F., Li, X., Zhou, J., Xu, Q., Wang, X., Yuan, H., & Lou, H. (2015). Secondary metabolites from Aspergillus fumigatus, an endophytic fungus from the Liverwort Heteroscyphus tener. (Steph) Schiffn Chem Biodivers, 12(9), 1313–1321. https://doi.org/10.1002/cbdv.201400317.

    Article  CAS  PubMed  Google Scholar 

  10. Santhiya, D., & Ting, Y. (2005). Bioleaching of spent refinery processing catalyst using aspergillus niger with high-yield oxalic acid. Journal Of Biotechnology, 116, 171–184. https://doi.org/10.1016/j.jbiotec.2004.10.011.

    Article  CAS  PubMed  Google Scholar 

  11. Xie, G., & West, T. P. (2006). Citric acid production by Aspergillus niger on wet corn distillers grains. Applied Microbiology, 43(3), 269–273. https://doi.org/10.1111/j.1472-765X.200601958. x.

    Article  CAS  Google Scholar 

  12. Schuster, E., Dunn-Coleman, N., Frisvad, J., & Dijck, P. (2002). On the safety of Aspergillus niger - A review. Applied Microbiology And Biotechnology, 59, 426–435. https://doi.org/10.1007/s00253-002-1032-6.

    Article  CAS  PubMed  Google Scholar 

  13. Padhi, S., Masi, M., Panda, S. K., Luyten, W., Cimmino, A., Tayung, K., & Evidente, A. (2020). Antimicrobial secondary metabolites of an endolichenic aspergillus niger isolated from lichen thallus of Parmotrema ravum. Natural Product Research, 34(18), 2573–2580. https://doi.org/10.1080/14786419.2018.1544982.

    Article  CAS  PubMed  Google Scholar 

  14. Ding, L., Ren, L., Li, S., Song, J., Han, Z., He, S., & Xu, S. (2019). Production of New Antibacterial 4-Hydroxy-α-Pyrones by a Marine Fungus Aspergillus niger Cultivated in Solid Medium. Marine drugs, 17(6), 344. https://doi.org/10.3390/md17060344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Z., Ge, Y. Y., Chen, Q., Zhou, L. H., & Liu, W. J. (2011). Antifungal activity and stability of Aspergillus niger xj fermentation broth. Food Research And Development, 32, 141–143.

    CAS  Google Scholar 

  16. Zhao, J. Y., Xiao, Y., Li, Z., Zhang, Q. Y., & Yang, P. S. (2020). Antagonistic mechanism and antioxidant of crude extract of Aspergillus niger xj. Chinese Journal of Pesticide Science, 22, 642–651. https://doi.org/10.16801/j.issn.1008-7303.2020.0084.

    Article  CAS  Google Scholar 

  17. Zhang, S., Yuan, H. W., Li, Z., Xiao, Y., Ji, Y. Y., & Tang, J. H. (2019). Preliminary studies on the antifungal mechanism of supercritical extraction from Aspergillus niger against Alternaria alternata. Plant Protection, 45, 57–63. https://doi.org/10.16688/j.zwbh.2018193.

    Article  CAS  Google Scholar 

  18. Guo, K., Zhang, Q., Zhao, J., Li, Z., Ran, J., Xiao, Y., Zhang, S., & Hu, M. (2021). Antibacterial mechanism of Aspergillus niger xj spore powder crude extract B10 against Agrobacterium tumefaciens T-37. Biotechnology And Biotechnological Equipment, 35, 162–169. https://doi.org/10.1080/13102818.2020.1858722.

    Article  CAS  Google Scholar 

  19. Veiga, A., Toledo, M. D. G. T., Rossa, L. S., Mengarda, M., Stofella, N. C. F., Oliveira, L. J., Gonçalves, A. G., & Murakami, F. S. (2019). Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. Journal Of Microbiol Methods, 162, 50–61. https://doi.org/10.1016/j.mimet.2019.05.003.

    Article  CAS  Google Scholar 

  20. Li, Y., Han, Q., Feng, J., Tian, W., & Mo, H. (2014). Antibacterial characteristics and mechanisms of ɛ-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control, 43, 22–27. https://doi.org/10.1016/j.foodcont.2014.02.023.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282–289. https://doi.org/10.1016/j.foodcont.2015.05.032.

    Article  CAS  Google Scholar 

  22. Sarkar, T., Bharadwaj, K. K., Salauddin, M., Pati, S., & Chakraborty, R. (2022). Phytochemical characterization, Antioxidant, Anti-inflammatory, anti-diabetic properties, Molecular Docking, pharmacokinetic profiling, and Network Pharmacology Analysis of the major phytoconstituents of raw and differently dried Mangifera indica (Himsagar cultivar): An in vitro and in Silico Investigations. Applied Biochemistry And Biotechnology, 194(2), 950–987. https://doi.org/10.1007/s12010-021-03669-8.

    Article  CAS  PubMed  Google Scholar 

  23. Deng, H., Zhu, J., Tong, Y., Kong, Y., Tan, C., Wang, M., Wan, M., & Meng, X. (2021). Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli. LWT, 150, 112018. https://doi.org/10.1016/j.lwt.2021.112018.

    Article  CAS  Google Scholar 

  24. Masoko, P., Gololo, S., Mokgotho, M., Eloff, J., Howard, R., & Mampuru, L. (2009). Evaluation of the antioxidant, Antibacterial, and antiproliferative activities of the Acetone Extract of the roots of Senna Italica (Fabaceae). African journal of traditional complementary and alternative medicines: AJTCAM/African Networks on Ethnomedicines, 7, 138–148. https://doi.org/10.4314/ajtcam.v7i2.50873.

    Article  CAS  Google Scholar 

  25. Rouchaud, J., Metsue, M., Gustin, F., Moulart, C., & Herin, M. (1989). Acid Catalyzed Heterolysis of a pyrazol α-Chloroacetanilide derivative with Alkyl-Amidonitrogen Fission. Bulletin des Sociétés Chimiques Belges, 98(5), 319–325. https://doi.org/10.1002/bscb.19890980506.

    Article  CAS  Google Scholar 

  26. Chauhan, S. S., Mamta, K., et al. (2004). Isolation and characterization of selected secondary metabolites from dry leaves of Quercus semicarpifolia. Indian Journal of Chemistry, 43, 223–226.

    Google Scholar 

  27. Gao, J. (2015). Study on Chemical Constituents and Biological Activity of Elsholtzia cypriani (pam p.) C. Y. Wu et S. Chow in Guizhou Province. Ph. D. Dissertation. University of Guizhou, Guizhou.

  28. Chambel, P., Oliveira, M. B., Andrade, P. B., Fernandes, J. O., Seabra, R. M., & Ferreira, M. A. (1998). Identification of 5,5′-oxy-dimethylene-bis(2-furaldehyde) by thermal decomposition of 5-hydroxymethyl-2-furfuraldehyde. Food Chemistry, 63(4), 473–477. https://doi.org/10.1016/S0308-8146(98)00062-4.

    Article  CAS  Google Scholar 

  29. Xie, M., Zou, P., He, Y., Liu, Y., & Huang, B. (2008). Dimethyl 5-nitro-isophthalate. Acta crystallographica. Section E, Structure reports online, 64(Pt 9), o1736. https://doi.org/10.1107/S1600536808024938

  30. Ou, A. J. (2004). Study on the Chemical Compositions and Pharmacology Activities of the Marine Sponge. Ph. D. Dissertation. University of Guangxi, Guangxi.

  31. Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43. https://doi.org/10.1017/S0021859605005708.

    Article  Google Scholar 

  32. Singh, V. K., Singh, R., Kumar, A., & Bhadouria, R. (2021). Chap. 2 - current status of plant diseases and food security. In A. Kumar, & S. Droby (Eds.), Food Security and Plant Disease Management19-35. Woodhead Publishing.

  33. Wei, L., Zhang, Q., Xie, A., Xiao, Y., Guo, K., Mu, S., Xie, Y., Li, Z., & He, T. (2022). Isolation of Bioactive Compounds, Antibacterial Activity, and action mechanism of Spore Powder from Aspergillus niger xj. Frontiers In Microbiology, 13, 934857. https://doi.org/10.3389/fmicb.2022.934857.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wiemann, C., Goettel, M., Vardy, A., Elcombe, B. M., Elcombe, C. R., Chatham, L. R., Wang, H., Li, L., Buesen, R., Honarvar, N., Treumann, S., Marxfeld, H., Groeters, S., & Lake, B. G. (2019). Metazachlor: Mode of action analysis for rat liver tumour formation and human relevance. Toxicology, 426, 152282. https://doi.org/10.1016/j.tox.2019.152282.

    Article  CAS  PubMed  Google Scholar 

  35. Maršík, P., Zunová, T., Vaněk, T., & Podlipná, R. (2021). Metazachlor effect on poplar-pioneer plant species for riparian buffers. Chemosphere, 274, 129711. https://doi.org/10.1016/j.chemosphere.2021.129711.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, H., Wang, H., & Ki, J. (2021). Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate Prorocentrum minimum as revealed with metazachlor treatment. Ecotox Environ Safe, 211, 111928. https://doi.org/10.1016/j.ecoenv.2021.111928.

    Article  CAS  Google Scholar 

  37. Pan, H., Xiao, Y., Xie, A., Li, Z., Ding, H., Yuan, X., Sun, R., & Peng, Q. (2022). The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ, 10, e14304. https://doi.org/10.7717/peerj.14304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma, A., Bajpai, V. K., & Baek, K. (2013). Determination of Antibacterial Mode of Action of Allium sativum essential oil against Foodborne Pathogens using membrane permeability and surface characteristic parameters. Journal Of Food Safety, 33(2), 197–208. https://doi.org/10.1111/jfs.12040.

    Article  CAS  Google Scholar 

  39. Diao, W., Hu, Q., Zhang, H., & Xu, J. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill). Food Control, 35(1), 109–116. https://doi.org/10.1016/j.foodcont.2013.06.056.

    Article  CAS  Google Scholar 

  40. Chen, C. Z., & Cooper, S. L. (2002). Interactions between dendrimer biocides and bacterial membranes. Biomaterials, 23(16), 3359–3368. https://doi.org/10.1016/S0142-9612(02)00036-4.

    Article  CAS  PubMed  Google Scholar 

  41. Bajpai, V., Al-Reza, S., Choi, U., Lee, J., & Chul, S. (2009). Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food and chemical toxicology, 47, 1876–1883. https://doi.org/10.1016/j.fct.2009.04.043.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, C., Chang, T., Yang, H., & Cui, M. (2015). Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47, 231–236. https://doi.org/10.1016/j.foodcont.2014.06.034.

    Article  CAS  Google Scholar 

  43. Zhao, L., Zhang, H., Hao, T., & Li, S. (2015). In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chemistry, 187, 370–377. https://doi.org/10.1016/j.foodchem.2015.04.108.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Guizhou Province High-level Innovative Talent Project (Qiankehe Platform Talent-GCC[2022]027−1), and the Science and Technology Project of Guizhou Province (grant number [2021]193).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Longfeng Wei, Jiang Ran and Zhu Li. The original manuscript was written by Longfeng Wei and Jiang Ran. Qinyu Zhang and Kun Guo analyzed the data. Shuzhen Mu and Yang Xiao contributed to the identification of compounds. Yudan Xie, and Ailin Xie helped to revise the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhu Li.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors read and approved the manuscript for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Ran, J., Li, Z. et al. Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus Niger xj. Appl Biochem Biotechnol 196, 878–895 (2024). https://doi.org/10.1007/s12010-023-04577-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04577-9

Keywords

Navigation