Skip to main content
Log in

Complete Genome Sequencing and Bacteriocin Functional Characterization of Pediococcus ethanolidurans CP201 from Daqu

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aims to sequence the whole genome of Pediococcus ethanolidurans CP201 isolated from Daqu and determine the anti-corrosion ability of bacteriocins on chicken breast. The whole genome sequence information of P. ethanolidurans CP201 was analyzed, and its gene structure and function were explored. It was found that gene1164 had annotations in the NR, Pfam, and Swiss-Prot databases, and was related to bacteriocins. The exogenous expression of the bacteriocin gene Pediocin PE-201 was analyzed based on the pET-21b vector and the host BL21, and the corresponding bacteriocin was successfully expressed under the induction of IPTG. After purification by NI–NTA column, enterokinase treatment, membrane dialysis concentration treatment, and SDS-PAGE electrophoresis, the molecular weight was about 6.5 kDa and the purity was above 90%. By applying different concentrations of bacteriocin to chicken breast with different levels of contamination, the control of pathogenic bacteria, the ordinary contamination level (OC) group, and the high contamination level (MC) group could be completely achieved with 25 mg/L bacteriocin. In conclusion, the bacteriocin produced by the newly isolated CP201 can be applied to the preservation of meat products to prevent the risk of food-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The author states that the data and other documents supporting the results of this research can be found in the article. In addition, the sequence data reported in this paper has been stored in NCBI SRA database (PRJNA884871).

References

  1. CDC. (2021). Salmonella. Centers for disease control and prevention. Retrieved from https://www.cdc.gov/salmonella/index.html. Accessed  11 Oct 2021.

  2. Li, Y., Yang, X., Zhang, H., Jia, H., & Yang, D. (2020). Prevalence and antimicrobial susceptibility of Salmonella in the commercial eggs in China. International Journal of Food Microbiology, 325, 108623.

    CAS  PubMed  Google Scholar 

  3. Li, Q., Xin, W., Yin, K., Hu, Y., & Jiao, X. (2017). Genetic analysis and crispr typing of Salmonella enterica serovar enteritidis from different sources revealed potential transmission from poultry and pig to human. International Journal of Food Microbiology, 266, 119–125.

    PubMed  Google Scholar 

  4. Souza, M. N., Lehmann, F. K. M., De Carli, S., Kipper, D., Fonseca, A. S. K., Ikuta, N., & Lunge, V. R. (2019). Molecular detection of Salmonella serovars enteritidis, heidelberg and typhimurium directly from pre-enriched poultry samples. British Poultry Science, 60(4), 388–394.

    CAS  PubMed  Google Scholar 

  5. Guohan, M. A., Huanhuan, M. A., Xinran, L., Liu, J., Sun, Y., Bai, F., & Jianrong, L. (2019). Screening for broad-spectrum antagonistic lactic acid bacteria from intestine of turbot and identi? cation of bacteriocin produced by it. Food Science, 40(6), 159–165.

    Google Scholar 

  6. Yi, L., Luo, L., & Lü, X. (2018). Efficient exploitation of multiple novel bacteriocins by combination of complete genome and peptidome. Frontiers in Microbiology, 9, 1567.

    PubMed  PubMed Central  Google Scholar 

  7. Arbulu, S., Jiménez, J. J., Gútiez, L., Feito, J., Cintas, L. M., Herranz, C., & Hernández, P. E. (2019). Cloning and expression of synthetic genes encoding native, hybrid-and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Research International, 121, 888–899.

    CAS  PubMed  Google Scholar 

  8. Cao, S., Du, R., Zhao, F., Xiao, H., Han, Y., & Zhou, Z. (2019). The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by Enterococcus faecalis TG2. Food Control, 96, 470–478.

    CAS  Google Scholar 

  9. Lv, X., Ma, H., Sun, M., Lin, Y., Bai, F., Li, J., & Zhang, B. (2018). A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control, 89, 22–31.

    CAS  Google Scholar 

  10. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16(9), 1058–1071.

    CAS  Google Scholar 

  11. Gabrielsen, C., Brede, D. A., Nes, I. F., & Diep, D. B. (2014). Circular bacteriocins: Biosynthesis and mode of action. Applied and Environmental Microbiology, 80(22), 6854–6862.

    PubMed  PubMed Central  Google Scholar 

  12. Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood biopreservation by lactic acid bacteria–A review. LWT-Food Science and Technology, 54(2), 315–324.

    CAS  Google Scholar 

  13. Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1(1), 43–63.

    Google Scholar 

  14. Pei, J., Li, X., Han, H., & Tao, Y. (2018). Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control, 84, 111–117.

    CAS  Google Scholar 

  15. Martinez, F. A. C., Balciunas, E. M., Converti, A., Cotter, P. D., & de Souza Oliveira, R. P. (2013). Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances, 31(4), 482–488.

    CAS  PubMed  Google Scholar 

  16. Zheng, X. W., Tabrizi, M. R., Nout, M. R., & Han, B. Z. (2011). Daqu—A traditional Chinese liquor fermentation starter. Journal of the Institute of Brewing, 117(1), 82–90.

    CAS  Google Scholar 

  17. Hu, Y., Huang, X., Yang, B., Zhang, X., Han, Y., Chen, X. X., & Han, B. Z. (2021). Contrasting the microbial community and metabolic profile of three types of light-flavor Daqu. Food Bioscience, 44, 101395.

    CAS  Google Scholar 

  18. He, G., Huang, J., Zhou, R., Wu, C., & Jin, Y. (2019). Effect of fortified Daqu on the microbial community and flavor in Chinese strong-flavor liquor brewing process. Frontiers in Microbiology, 10, 56.

    PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., Wu, C., Ding, X., Zheng, J., & Zhou, R. (2014). Characterisation of microbial communities in Chinese liquor fermentation starters Daqu using nested PCR-DGGE. World Journal of Microbiology and Biotechnology, 30(12), 3055–3063.

    CAS  PubMed  Google Scholar 

  20. Tran, N. H., Rahman, M. Z., He, L., Xin, L., Shan, B., & Li, M. (2016). Complete de novo assembly of monoclonal antibody sequences. Scientific Reports, 6(1), 1–10.

    Google Scholar 

  21. Porto, W. F., Pires, A. S., & Franco, O. L. (2017). Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnology Advances, 35(3), 337–349.

    CAS  PubMed  Google Scholar 

  22. Queiroz, L. L., Hoffmann, C., Lacorte, G. A., de Melo Franco, B. D. G., & Todorov, S. D. (2022). Genomic and functional characterization of bacteriocinogenic lactic acid bacteria isolated from Boza, a traditional cereal-based beverage. Scientific Reports, 12(1), 1–13.

    Google Scholar 

  23. Rodriguez-R, L. M., Gunturu, S., Harvey, W. T., Rosselló-Mora, R., Tiedje, J. M., Cole, J. R., & Konstantinidis, K. T. (2018). The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Research, 46(W1), W282–W288.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan, P. P., Lin, B. Y., Mak, A. J., & Lowe, T. M. (2021). tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Research, 49(16), 9077–9096.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bland, C., Ramsey, T. L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N. C., & Hugenholtz, P. (2007). CRISPR recognition tool (CRT): A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 8(1), 1–8.

    Google Scholar 

  26. Yella, V. R., Kumar, A., & Bansal, M. (2018). Identification of putative promoters in 48 eukaryotic genomes on the basis of DNA free energy. Scientific Reports, 8(1), 1–13.

    CAS  Google Scholar 

  27. van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research, 46(W1), W278–W281.

    PubMed  PubMed Central  Google Scholar 

  28. Moon, G. S., Pyun, Y. R., & Kim, W. J. (2006). Expression and purification of a fusion-typed pediocin PA-1 in Escherichia coli and recovery of biologically active pediocin PA-1. International Journal of Food Microbiology, 108(1), 136–140.

    CAS  PubMed  Google Scholar 

  29. Beaulieu, L., Tolkatchev, D., Jette, J. F., Groleau, D., & Subirade, M. (2007). Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: Cloning, expression, purification, and characterization. Canadian Journal of Microbiology, 53(11), 1246–1258.

    CAS  PubMed  Google Scholar 

  30. Xin, L. Ř, Yi, L., Dang, J., Dang, Y., & Liu, B. (2014). Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control, 46, 264–271.

    Google Scholar 

  31. De Souza, G. T., De Carvalho, R. J., De Sousa, J. P., Tavares, J. F., Schaffner, D., De Souza, E. L., & Magnani, M. (2016). Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semihard cheese broth and slurry. Journal of Food Protection, 79(2), 246–252.

    PubMed  Google Scholar 

  32. Nakano, C., Ozawa, H., Akanuma, G., Funa, N., & Horinouchi, S. (2009). Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis. Journal of Bacteriology, 191(15), 4916–4923.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seshime, Y., Juvvadi, P. R., Kitamoto, K., Ebizuka, Y., & Fujii, I. (2010). Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB. Bioorganic & Medicinal Chemistry, 18(12), 4542–4546.

    CAS  Google Scholar 

  34. Gillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., & Handelsman, J. (2002). Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Applied and Environmental Microbiology, 68(9), 4301–4306.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rattray, J. E., van de Vossenberg, J., Hopmans, E. C., Kartal, B., van Niftrik, L., Rijpstra, W. I. C., Strous, M., Jetten, M. S. M., Schouten, S., & Damsté, J. S. S. (2008). Ladderane lipid distribution in four genera of anammox bacteria. Archives of Microbiology, 190(1), 51–66.

    CAS  PubMed  Google Scholar 

  36. Tietz, J. I., Schwalen, C. J., Patel, P. S., Maxson, T., & Blair, P. M. (2017). A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nature Chemical Biology, 13(5), 470–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cap, M., Paredes, P. F., Fernández, D., Mozgovoj, M., Vaudagna, S. R., & Rodriguez, A. (2020). Effect of high hydrostatic pressure on Salmonella spp inactivation and meat-quality of frozen chicken breast. LWT, 118, 108873.

    CAS  Google Scholar 

  38. Albano, H., Todorov, S. D., van Reenen, C. A., Hogg, T., Dicks, L. M., & Teixeira, P. (2007). Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology, 116(2), 239–247.

    CAS  PubMed  Google Scholar 

  39. Loessner, M., Guenther, S., Steffan, S., & Scherer, S. (2003). A pediocin-producingsLactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Applied and Environmental Microbiology, 69(3), 1854–1857.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Osmanagaoglu, O., Kiran, F., & Nes, I. F. (2011). A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from human breast milk produces pediocin AcH/PA-1. African Journal of Biotechnology, 10(11), 2070–2079.

    CAS  Google Scholar 

  41. Chen, Y., Ludescher, R. D., & Montville, T. J. (1998). Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Applied and Environmental Microbiology, 64(9), 3530–3532.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Santiago-Silva, P., Soares, N. F., Nóbrega, J. E., Júnior, M. A., Barbosa, K. B., Volp, A. C. P., Zerdas, E., & Würlitzer, N. J. (2009). Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control, 20(1), 85–89.

    CAS  Google Scholar 

  43. Ceruso, M., Liu, Y. H., Gunther, N. W., Pepe, T., Anastasio, A., Qi, P. X., Tomasula, P. M., & Renye, J. A. (2021). Anti-listerial activity of thermophilin 110 and pediocin in fermented milk and whey. Food Control, 125, 107941.

  44. Berry, E. D., Hutkins, R. W., & Mandigo, R. W. (1991). The use of bacteriocin-producing Pediococcus acidilactici to control postprocessing Listeria monocytogenes contamination of frankfurters. Journal of Food Protection, 54(9), 681–686.

    PubMed  Google Scholar 

  45. Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1), 32.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Project No. 30660005), the Sichuan Tujiu Liquor Co., Ltd (Project No. 222305), the Protect of Chengdu Shuzhiyuan Liquor Co., Ltd (Project No. 202306), the Protect of Chengdu Technology Innovation (Project No. 2022-YF05-00136-SN), and the Project of Sichuan Institute of International Science and Technology Cooperation (Australia and New Zealand) (Project No. AXYJ2022 -005).

Author information

Authors and Affiliations

Authors

Contributions

LZL: writing—original draft preparation; YL: methodology; ZP: writing—review and editing; LT: data curation, software, validation; ZJH: data curation; TWG: funding acquisition, writing—reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tongwei Guan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors declared their consent to participate.

Consent to Publish

All authors declare their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, T., Long, L., Liu, Y. et al. Complete Genome Sequencing and Bacteriocin Functional Characterization of Pediococcus ethanolidurans CP201 from Daqu. Appl Biochem Biotechnol 195, 4728–4743 (2023). https://doi.org/10.1007/s12010-023-04575-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04575-x

Keywords

Navigation