Skip to main content

Advertisement

Log in

Nanoemulsion-Based System as a Novel and Promising Approach for Enhancing the Antimicrobial and Antitumoral Activity of Thymus vulgaris (L.) Oil in Human Hepatocellular Carcinoma Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The utilisation of medicinal plants and their essential oils is receiving more attention due to the ineffectiveness of current therapeutic methods in the treatment of various cancers and the rising incidence of bacterial antibiotic resistance. Thymol, an active ingredient of Thymus vulgaris, is known to have hepatoprotective, antibacterial, and antioxidant properties. To overcome major obstacles to their usage, such as quick oxidation and high volatility, plant essential oils must be administered through a system to improve the delivery of their active pharmaceutical ingredient. The bioavailability of active substances may be enhanced by the colloidal dispersion nanoemulsion. Therefore, this study aims to derive a comparative evaluation of the thyme oil nanoemulsion formulation and the characterisation of its antibacterial and antitumorigenic activities. A nanoemulsion (NE) with a droplet size of 122.2 ± 1.079 nm was discovered to be stable and mono-dispersed for 4 months and inhibited the growth of B. subtilis, E. coli, P. aeruginosa, and S. aureus. It also displayed antitumorigenic capabilities in HepG2 cells by arresting the cell cycle in the G2/M phase and upregulating the gene expression levels of Bcl-2-associated X protein (Bax), Caspase 3, 8, and 9, as well as a concomitant concentration-dependent decrease in B-cell leukaemia/lymphoma 2 protein (BCL2). Along with an increase in inducible nitric oxide synthase (iNOS) levels, upregulation of the expression levels of the reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and endoplasmic reticulum (ER) stress pathways was also seen, indicating of ROS formation in the cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be available on a reasonable request.

References

  1. Pan, S.-Y., Litscher, G., Gao, S.-H., Zhou, S.-F., Yu, Z.-L., Chen, H.-Q., Zhang, S.-F., Tang, M.-K., Sun, J.-N., & Ko, K.-M. (2014). Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-Based Complementary and Alternative Medicine, 2014, 20, Article ID 525340. https://doi.org/10.1155/2014/525340

  2. Hileman, B. (2007). Food irradiation. Chemical & Engineering News, 85(3), 41–43.

    Article  Google Scholar 

  3. El-Sayed, S. M., & El-Sayed, H. S. (2021). Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. Journal of Materials Research and Technology, 10, 1029–1041.

    Article  CAS  Google Scholar 

  4. Sampaio, C. I., Bourbon, A. I., Gonçalves, C., Pastrana, L. M., Dias, A. M., & Cerqueira, M. A. (2022). Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT, 154, 112748.

    Article  CAS  Google Scholar 

  5. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–53.

    Article  CAS  PubMed  Google Scholar 

  6. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–A review. Food and Chemical Toxicology, 46(2), 446–75.

    Article  CAS  PubMed  Google Scholar 

  7. Cosentino, S., Barra, A., Pisano, B., Cabizza, M., Pirisi, F. M., & Palmas, F. (2003). Composition and antimicrobial properties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms. Journal of Food Protection, 66(7), 1288–91.

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen, C. K., Kjems, J., Mygind, T., Snabe, T., Schwarz, K., Serfert, Y., et al. (2017). Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria. International Journal of Food Microbiology, 242, 7–12.

    Article  Google Scholar 

  9. Carson, C. F., & Hammer, K. A. (2011). Chemistry and bioactivity of essential oils. Lipids Essent Oils Antimicrob Agents, 25, 203–238.

    Article  Google Scholar 

  10. Peter, K. V. (2006). Handbook of herbs and spices: Volume 3: Woodhead publishing.

  11. Siani, A., Ramos, Md. S., Menezes-de-Lima, O., Jr., Ribeiro-dos-Santos, R., Fernadez-Ferreira, E., Soares, R., et al. (1999). Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. Journal of Ethnopharmacology, 66(1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  12. Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A., & Fecka, I. (2020). Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules, 25(18), 4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammoudi Halat, D., Krayem, M., Khaled, S., & Younes, S. (2022). A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients, 14(10), 2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumari, S., Kumaraswamy, R., Choudhary, R. C., Sharma, S., Pal, A., Raliya, R., et al. (2018). Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific Reports, 8(1), 1–12.

    Article  Google Scholar 

  15. Johny, A. K., Darre, M., Donoghue, A., Donoghue, D., & Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. Journal of Applied Poultry Research, 19(3), 237–244.

    Article  CAS  Google Scholar 

  16. Escobar, A., Perez, M., Romanelli, G., & Blustein, G. (2020). Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, 13(12), 9243–9269.

    Article  CAS  Google Scholar 

  17. Liu, Q., Meng, X., Li, Y., Zhao, C.-N., Tang, G.-Y., & Li, H.-B. (2017). Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences, 18(6), 1283.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cai, C., Ma, R., Duan, M., & Lu, D. (2019). Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum arabic. RSC Advances, 9(34), 19740–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Boskovic, M., Zdravkovic, N., Ivanovic, J., Djordjevic, J., Janjic, J., Pavlicevic, N., et al. (2016). Inhibitory effect of thyme and oregano essential oils and some essential oil components on Salmonella Senftenberg and Salmonella Give. Scientific Journal “Meat Technology,” 57(1), 71–5.

    Google Scholar 

  20. Oliveira, M. MMd., Brugnera, D. F., & Piccoli, R. H. (2013). Essential oils of thyme and Rosemary in the control of Listeria monocytogenes in raw beef. Brazilian Journal of Microbiology, 44(4), 1181–1188.

    Article  PubMed  Google Scholar 

  21. Miladi, H., Slama, R., Mili, D., Zouari, S., Bakhrouf, A., & Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Natural Science, 5, 729–739. https://doi.org/10.4236/ns.2013.56090

  22. Quendera, A. P., Barreto, A. S., & Semedo-Lemsaddek, T. (2019). Antimicrobial activity of essential oils against foodborne multidrug-resistant enterococci and aeromonads in planktonic and biofilm state. Food Science and Technology International, 25(2), 101–108.

    Article  CAS  PubMed  Google Scholar 

  23. Kuete, V. (2017). Thymus vulgaris. Medicinal spices and vegetables from Africa, 599–609.

  24. Hayouni, E. A., Bouix, M., Abedrabba, M., Leveau, J.-Y., & Hamdi, M. (2008). Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chemistry, 111(3), 707–18.

    Article  CAS  Google Scholar 

  25. Anton, N., Benoit, J.-P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128(3), 185–99.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, H., Zhang, Y., & Zhong, Q. (2015). Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. Journal of Food Engineering, 144, 93–102.

    Article  CAS  Google Scholar 

  27. El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E. A., Casabianca, H., et al. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1–2), 220–43.

    Article  CAS  PubMed  Google Scholar 

  28. Donsì, F., Annunziata, M., Vincensi, M., & Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology, 159(4), 342–50.

    Article  PubMed  Google Scholar 

  29. Rodríguez, J., Martín, M. J., Ruiz, M. A., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83, 41–59.

    Article  Google Scholar 

  30. Weiss, J., Gaysinsky, S., Davidson, M., McClements, J. (2009). Nanostructured encapsulation systems: Food antimicrobials. In Global issues in food science and technology (pp. 425–79). Elsevier.

  31. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102–10.

    Article  CAS  Google Scholar 

  32. Sharifi-Rad, M., Varoni, E. M., Iriti, M., Martorell, M., Setzer, W. N., del Mar, C. M., et al. (2018). Carvacrol and human health: A comprehensive review. Phytotherapy Research, 32(9), 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  33. Islam, M. T., Khalipha, A. B., Bagchi, R., Mondal, M., Smrity, S. Z., Uddin, S. J., et al. (2019). Anticancer activity of Thymol: A literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life, 71(1), 9–19.

    Article  CAS  PubMed  Google Scholar 

  34. Nagoor Meeran, M. F., Javed, H., Al Taee, H., Azimullah, S., & Ojha, S. K. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, 8, 380.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ahmad, A., Saeed, M., & Ansari, I. A. (2021). Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. Journal of Food Biochemistry, 45(12), e14010.

    Article  CAS  PubMed  Google Scholar 

  36. Mansuri, A., Chaudhari, R., Nasra, S., Meghani, N., Ranjan, S., & Kumar, A. (2023). Development of food-grade antimicrobials of fenugreek oil nanoemulsion—Bioactivity and toxicity analysis. Environmental Science and Pollution Research, 30(10), 24907–24918.

    Article  CAS  PubMed  Google Scholar 

  37. Meghani, N., Patel, P., Kansara, K., Ranjan, S., Dasgupta, N., Ramalingam, C., et al. (2018). Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids and Surfaces B: Biointerfaces, 166, 349–357.

    Article  CAS  PubMed  Google Scholar 

  38. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., & McClements, D. J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 194, 410–5.

    Article  CAS  PubMed  Google Scholar 

  39. Pratap-Singh, A., Guo, Y., Lara Ochoa, S., Fathordoobady, F., & Singh, A. (2021). Optimal ultrasonication process time remains constant for a specific nanoemulsion size reduction system. Scientific Reports, 11(1), 1–12.

    Article  Google Scholar 

  40. Khameneh, B., Eskin, N. M., Iranshahy, M., & Fazly Bazzaz, B. S. (2021). Phytochemicals: A promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics, 10(9), 1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DiPaola, R. S. (2002). To arrest or not to G2-M Cell-cycle arrest: Commentary re: AK Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin. Cancer Res., 8: 3512–3519, 2002. Clinical Cancer Research, 8(11), 3311–3314.

  42. Lambert, R., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Gujarat Institute for Chemical Technology (GICT) (AU/DBLS/GICT-nanomaterials/2016-17/01) for the funding and has been acknowledged for the establishment of a facility for environmental risk assessment of chemicals and nanomaterials.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Nanoemulsion preparation, data collection, and analysis were performed by Simran Nasra. The first draft of the manuscript was written by Simran Nasra and all authors commented on previous versions of the manuscript. Analysis and manuscript review were performed by Nikita Meghani. Conceptualisation, supervision, funding acquisition, and writing—reviewing and editing were performed by Ashutosh Kumar. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashutosh Kumar.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasra, S., Meghani, N. & Kumar, A. Nanoemulsion-Based System as a Novel and Promising Approach for Enhancing the Antimicrobial and Antitumoral Activity of Thymus vulgaris (L.) Oil in Human Hepatocellular Carcinoma Cells. Appl Biochem Biotechnol 196, 949–970 (2024). https://doi.org/10.1007/s12010-023-04571-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04571-1

Keywords

Navigation