Skip to main content
Log in

Plant Growth–Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth–promoting rhizobacteria (PGPR)–assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal–contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal–contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil’s degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that data supporting the literature of this review article are available within the article.

References

  1. Abatenh, E., Gizaw, B., Tsegaye, Z., et al. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environment Biology, 2(1), 038–046. https://doi.org/10.17352/ojeb.000007

    Article  Google Scholar 

  2. Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008

    Article  Google Scholar 

  3. Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth Promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365–1377. https://doi.org/10.1016/j.arabjc.2014.11.020

    Article  CAS  Google Scholar 

  4. Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1, 19–26. https://doi.org/10.12966/bmb.06.02.2013

    Article  Google Scholar 

  5. Ahirwar, N. K., Gupta, G., Singh, R., et al. (2016). Isolation, identification and characterization of heavy metal resistant bacteria from industrial affected soil in central India. International Journal of Pure & Applied Bioscience, 4(6), 88–93. https://doi.org/10.18782/2320-7051.2424

    Article  Google Scholar 

  6. Ambrosini, V. G., Rosa, D. J., de Melo, G. W., et al. (2018). High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of ‘Red Niagara’plantlets. Plant Physiology and Biochemistry, 128, 89–98. https://doi.org/10.1016/j.plaphy.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  7. Asadullah, A. B., & Javed, H. (2021). PGPR assisted bioremediation of heavy metals and nutrient accumulation in Zea Mays under saline sodic soil. Pakistan Journal of Botany, 53(1), 31–38. https://doi.org/10.30848/PJB2021-1

    Article  CAS  Google Scholar 

  8. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32(11), 1–18. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  9. Bai, J., Chao, Y., Chen, Y., et al. (2019). The effect of interaction between Bacillus subtilis DBM and soil minerals on Cu (II) and Pb (II) adsorption. Journal of Environmental Sciences, 78, 328e337. https://doi.org/10.1016/j.jes.2018.11.012

    Article  CAS  Google Scholar 

  10. Bandowe, B. A. M., Bigalke, M., Boamah, L., et al. (2014). Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment. Environment International, 65, 135–146. https://doi.org/10.1016/j.envint.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  11. Barr, D., Finnamore, J. R., Bardos, R. P., et al. (Eds.). (2002). Biological methods for assessment and remediation of contaminated land: Case studies. CIRIA.

    Google Scholar 

  12. Belogolova G. A., Baenguev B. A., Gordeeva O. N., et al. (2019) Rhizobacteria effect on bioaccumulation and biotransformation of arsenic and heavy metal compounds in the technogenous soils. In IOP Conference Series: Environment. Earth Science, Vol. 381. IOP Publishing, p 012007. https://doi.org/10.1088/1755-1315/381/1/012007

  13. Bhakat, K., Chakraborty, A., & Islam, E. (2019). Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore. Environmental Science and Pollution Research, 26(13), 12907–12919. https://doi.org/10.1007/s11356-019-04827-6

    Article  CAS  PubMed  Google Scholar 

  14. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burd, G. I., Dixon, D. G., & Glick, B. R. (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Applied and Environment Microbiology, 64(10), 3663–3668. https://doi.org/10.1128/AEM.64.10.3663-3668.1998

    Article  CAS  Google Scholar 

  16. Chauhan, P. S., Mishra, S. K., Misra, S., et al. (2018). Evaluation of fertility indicators associated with arsenic-contaminated paddy fields soil. International Journal of Environmental Science and Technology, 15(11), 2447–2458. https://doi.org/10.1007/s13762-017-1583-9

    Article  CAS  Google Scholar 

  17. Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  18. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 42(5), 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  19. Cui, J. L., Zhao, Y. P., Chan, T. S., et al. (2020). Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. Journal of Hazardous Materials, 381, 121208. https://doi.org/10.1016/j.jhazmat.2019.121208

    Article  CAS  PubMed  Google Scholar 

  20. Cui, J. L., Zhao, Y. P., Lu, Y. J., et al. (2019). Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 26, 17e726. https://doi.org/10.1016/j.envint.2019.02.045

    Article  CAS  Google Scholar 

  21. Dabrowska, G., Hrynkiewicz, K., Trejgell, A., et al. (2017). The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. International Journal of Phytoremediation, 19(7), 597–604. https://doi.org/10.1080/15226514.2016.1244157

    Article  CAS  PubMed  Google Scholar 

  22. DalCorso, G., Fasani, E., Manara, A., et al. (2019). Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412. https://doi.org/10.3390/ijms20143412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das, J., & Sarkar, P. (2018). Remediation of arsenic in mung bean (Vigna Radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter Lwoffii. Science of the Total Environment, 624, 1106–1118. https://doi.org/10.1016/j.scitotenv.2017.12.157

    Article  CAS  PubMed  Google Scholar 

  24. Diels, L., Spaans, P. H., Van Roy, S., et al. (2003). Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy, 71(1–2), 235–241. https://doi.org/10.1016/S0304-386X(03)00161-0

    Article  CAS  Google Scholar 

  25. Dimkpa, C., Svatoš, A., Merten, D., et al. (2008). Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54(3), 163–72. https://doi.org/10.1139/W07-130

    Article  CAS  PubMed  Google Scholar 

  26. Dixit, G., Singh, A. P., Kumar, A., et al. (2015). Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Science and Reports, 5, 16205. https://doi.org/10.1038/srep16205

    Article  CAS  Google Scholar 

  27. Dotaniya M. L., Rajendiran S., Meena B.P., et al. (2016). Elevated carbon dioxide (CO2) and temperature vis- a-vis carbon sequestration potential of global terrestrial ecosystem. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: An approach to combat climate change in Indian Himalaya. Springer, Singapore, p 225–256. https://doi.org/10.1007/978-981-10-2558-7_9

  28. Dotaniya, M. L., Thakur, J. K., Meena, V. D., et al. (2014). Chromium pollution: A threat to environment. Agricultural Reviews, 35(2), 153–157. https://doi.org/10.5958/0976-0741.2014.00094.4

    Article  Google Scholar 

  29. Frankenberger WT, Arshad M. (2002). Volatilization of arsenic. In: Environmental chemistry of arsenic, William T. Frankenberger, Jr(ed) p 363–380.

  30. Friesl-Hanl, W., Platzer, K., Horak, O., et al. (2009). Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: A field study in Austria over 5 years. Environmental Geochemistry and Health, 31, 581–594. https://doi.org/10.1007/s10653-009-9256-3

    Article  CAS  PubMed  Google Scholar 

  31. Gao X., Rodrigues S. M., Spielman-Sun E., et al. (2019). Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environmental Science Technology,53(9):4959e4967. https://doi.org/10.1021/acs.est.8b07243

  32. Gauthier, P. T., Norwood, W. P., Prepas, E. E., et al. (2014). Metal–PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquatic Toxicology, 154, 253–269. https://doi.org/10.1016/j.aquatox.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  33. Gavrilescu, M. (2010). Environmental biotechnology: Achievements, opportunities and challenges. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 4(1), 1–36.

    Google Scholar 

  34. Gilis, A., Corbisier, P., Baeyens, W., et al. (1998). Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. Journal of Industrial Microbiology, 20(1), 61–68. https://doi.org/10.1038/sj.jim.2900478

    Article  CAS  Google Scholar 

  35. Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251, 1–7. https://doi.org/10.1016/j.femsle.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  36. Gontia-Mishra, I., Sapre, S., Sharma, A., et al. (2016). Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 35(4), 1000–1012. https://doi.org/10.1007/s00344-016-9598-x

    Article  CAS  Google Scholar 

  37. Gopinath A, Krishna K, Karthik C. (2020). Adsorptive removal and recovery of heavy metal ions from aqueous solution/effluents using conventional and nonconventional materials. In: Modern Age wastewater problems. Springer Nature, Switzerland, p 309–328. https://doi.org/10.1007/978-3-030-08283-3_15

  38. Gupta, S., & Nirwan, J. (2015). Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. International Journal of Environmental Science and Technology, 12(3), 995–1002. https://doi.org/10.1007/s13762-013-0484-9

    Article  CAS  Google Scholar 

  39. Gupta, S., & Pandey, S. (2019). ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10, 1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hamzah, A., Hapsari, R. I., & Wisnubroto, E. I. (2016). Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants. International Journal of Environment Agriculture Research, 2, 8–14.

    Google Scholar 

  41. Hansda A., Kumar V., Anshumal (2017). Cu-resistant Kocuria sp. CRB15: A potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech, 7: 132. https://doi.org/10.1007/s13205-017-0757-y

  42. Harmsen J., Rulkens W., Sims R. C., et al. (2007). Theory and application of landfarming to remediate PAHs and mineral oil contaminated sSediments: Beneficial reuse. Jounral of Environmental Quality,36. https://doi.org/10.2134/jeq2006.0163

  43. Hassen, W., Neifar, M., Cherif, H., et al. (2018). Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Frontiers in Microbiology, 9, 34. https://doi.org/10.3389/fmicb.2018.00034

    Article  PubMed  PubMed Central  Google Scholar 

  44. He, J., Chen, X., Zhang, Q., et al. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration & Biodegradation, 140, 67–71. https://doi.org/10.1016/j.ibiod.2019.03.012

    Article  CAS  Google Scholar 

  45. He, J., Zhang, Q., & Achal, V. (2020). Heavy metals immobilization in soil with plant-growth-promoting rhizobacteria and microbial carbonate precipitation in support of radish growth. Microbiology and Biotechnology Letters, 48(2), 223–229. https://doi.org/10.4014/mbl.1912.12011

    Article  CAS  Google Scholar 

  46. Hlihor, R. M., Gavrilescu, M., Tavares, T., et al. (2017). Bioremediation: An overview on current practices, advances, and new perspectives in environmental pollution treatment. BioMed Research International, 2017, 6327610. https://doi.org/10.1155/2017/6327610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, B., Jia, X., Hu, J., et al. (2017). Assessment of heavy metal pollution and health risks in the soil-plant human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14, 1042. https://doi.org/10.3390/ijerph14091042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, J., Liu, Z., Li, S., et al. (2016). Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. Journal of General and Applied Microbiology, 62, 258–265. https://doi.org/10.2323/jgam.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  49. Iqbal, H. H., Taseer, R., Anwar, S., et al. (2016). Human health risk assessment: Heavy metal contamination of vegetables in Bahawalpur. Pakistan Bulletin of Environmental Studies, 1(1), 10–17.

    Google Scholar 

  50. Jing, X. B., He, N., Zhang, Y., et al. (2012). Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus. Canadian Journal of Microbiology, 58(1), 45–53. https://doi.org/10.1139/w11-110

    Article  CAS  PubMed  Google Scholar 

  51. Joutey, N. T., Bahafid, W., Sayel, H., et al. (2013). Biodegradation: Involved microorganisms and genetically engineered microorganisms. Biodegradation Life of Science, 1, 289–320. https://doi.org/10.5772/56194

    Article  CAS  Google Scholar 

  52. Kamran, M., Malik, Z., Parveen, A., et al. (2020). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Plant Growth Regulation, 39, 266–281. https://doi.org/10.1007/s00344-019-09980-3

    Article  CAS  Google Scholar 

  53. Kanwal, R., Fiza, F., Iqra, W., et al. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119, 157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  Google Scholar 

  54. Karthik, C., Barathi, S., Pugazhendhi, A., et al. (2017). Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. Journal of Hazardous Materials, 333, 42–53. https://doi.org/10.1016/j.jhazmat.2017.03.037

    Article  CAS  PubMed  Google Scholar 

  55. Khan, M. U., Sessitsch, A., Harris, M., et al. (2015). Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 5, 1–10. https://doi.org/10.3389/fpls.2014.00755

    Article  CAS  Google Scholar 

  56. Khanna, K., Jamwal, V. L., Gandhi, S. G., et al. (2019). Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Science and Reports, 9(1), 1–4. https://doi.org/10.1038/s41598-019-41899-3

    Article  CAS  Google Scholar 

  57. Kingsley, D. M. (1994). The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes & Development, 8(2), 133–146. https://doi.org/10.1101/GAD.8.2.133

    Article  CAS  Google Scholar 

  58. Konkolewska, A., Piechalak, A., Ciszewska, L., et al. (2020). Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environmental Science and Pollution Research, 27(12), 13809–13825. https://doi.org/10.1007/s11356-020-07885-3

    Article  CAS  PubMed  Google Scholar 

  59. Kotoky, R., Nath, S., Maheshwari, D. K., et al. (2019). Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environmental Sustainability, 2, 135–144. https://doi.org/10.1007/s42398-019-00055-3

    Article  CAS  Google Scholar 

  60. Krumme, M. L., Smith, R. L., Egestorff, J., et al. (1994). Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms. Environmental Sciebce & Technology, 28, 1134–1138. https://doi.org/10.1021/es00055a025

    Article  CAS  Google Scholar 

  61. Kumar, A., Bisht, B. S., Joshi, V. D., et al. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1, 1079–1093.

    Google Scholar 

  62. Kumar, P., Toka, J., & Singal, H. R. (2019). Amelioration of chromium VI toxicity in sorghum (Sorghum bicolor L.) using glycine betaine. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-52479-w

    Article  CAS  Google Scholar 

  63. Lepp N. W. (2012). Effect of heavy metal pollution on plants: Metals in the environment, vol. 2. Applied Science Publishers, Liverpool, UK.

  64. Li, D., Xu, X., Yu, H., et al. (2017). Characterization of Pb2+ biosorption by psychro-trophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. Journal Environmental Management, 196, 8–15. https://doi.org/10.1016/j.jenvman.2017.02.076

    Article  CAS  Google Scholar 

  65. Li, X., Li, D., Yan, Z., et al. (2018). Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Advances, 8(54), 30902–30911. https://doi.org/10.1039/C8RA06270F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, X., Jiang, X., He, X., et al. (2019). Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. Journal of Plant Growth Regulation, 38(4), 1314–24. https://doi.org/10.1007/s00344-019-09935-8

    Article  CAS  Google Scholar 

  67. Ma, Y., Oliveira, R. S., & Freitas, H. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 7, 918. https://doi.org/10.3389/fpls.2016.00918

    Article  PubMed  PubMed Central  Google Scholar 

  68. Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278.

    Article  CAS  PubMed  Google Scholar 

  69. Manara A. (2012). Plant responses to heavy metal toxicity. In Plants and heavy metals. Springer, Dordrecht, p 27–53. https://doi.org/10.1007/978-94-007-4441-7_2

  70. Megharaj, M., & Naidu, R. (2017). Soil and brownfield bioremediation. Microb. Biotechnology, 10(5), 1244–1249. https://doi.org/10.1111/1751-7915.12840

    Article  CAS  Google Scholar 

  71. Mishra, A., & Malik, A. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environment Science and Technology, 43(11), 1162–1222. https://doi.org/10.1080/10934529.2011.627044

    Article  CAS  Google Scholar 

  72. Mishra, S. K., Khan, M. H., Misra, S., et al. (2017). Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Leeuwenhoek, 110(2), 253–70. https://doi.org/10.1007/s10482-016-0796-0

    Article  CAS  PubMed  Google Scholar 

  73. Mitra S., Pramanik K., Sarkar A., et al. (2018). Corrigendum to “Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress” Ecotoxicology and Environmental Safety,156:183–196. https://doi.org/10.1016/j.ecoenv.2018.03.001

  74. Muminah, B., Subair, H., et al. (2015). Isolation and screening of exopolysaccharide producing bacterial (EPS) from potato rhizosphere for soil aggregation. International Journal of Current Microbiology and Applied Sciences, 4, 341–349. https://doi.org/10.1016/j.profoo.2015.01.007

    Article  CAS  Google Scholar 

  75. Mwandira, W., Nakashima, K., Kawasaki, S., et al. (2020). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Science and Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-78187-4

    Article  CAS  Google Scholar 

  76. Nawar, N., Ebrahim, M., & Sami, E. (2013). Removal of heavy metals Fe3+, Mn2+, Zn2+, Pb2+ and Cd2+ from wastewater by using rice straw as low-cost adsorbent. Academic Journal of Interdisciplinary Studies, 2, 85. https://doi.org/10.5901/ajis.2013.v2n6p85

    Article  Google Scholar 

  77. Okereafor, U., Makhatha, M., Mekuto, L., et al. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17, 2204. https://doi.org/10.3390/ijerph17072204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parnell, J. J., Berka, R., Young, H. A., et al. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110. https://doi.org/10.3389/fpls.2016.01110

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pathak, A., Dastidar, M. G., & Sreekrishnan, T. R. (2009). Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 90(8), 2343–2353. https://doi.org/10.1016/j.jenvman.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  80. Pingoliya, K. K., Mathur, A. K., Dotaniya, M. L., et al. (2015). Impact of phosphorus and iron on protein and chlorophyll content in chickpea (Cicer arietinum L.). Legume Research, 38(4), 558–560. https://doi.org/10.5958/0976-0571.2015.00137.X

    Article  Google Scholar 

  81. Prasad, M. N. V. (2003). Phytoremediation of metal-polluted ecosystems: Hype for commercialization. Russian Journal of Plant Physiology, 50, 686–700. https://doi.org/10.1023/A:1025604627496

    Article  CAS  Google Scholar 

  82. Radice, F., Orlandi, V., Massa, V., et al. (2006). Genotypic characterization and phylogenetic relations of Pseudomonas sp. (formerly P. stutzeri) OX1. Current Microbiology, 52(5), 395–9. https://doi.org/10.1007/s00284-005-0355-9

    Article  CAS  PubMed  Google Scholar 

  83. Rahman, A., Nahar, N., & Nawani, N. N. (2015). Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, enterobacter cloacae b2-dha. Journal of Environmental Science and Health, Part A Environmental Science, 50, 1136–1147. https://doi.org/10.1080/10934529.2015.1047670

    Article  CAS  Google Scholar 

  84. Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  PubMed  Google Scholar 

  85. Raiesi, F., & Sadeghi, E. (2019). Interactive effect of salinity and cadmium toxicity on soil microbial properties and enzyme activities. Ecotoxicology and Environmental Safety, 168, 221–229. https://doi.org/10.1016/j.ecoenv.2018.10.079

    Article  CAS  PubMed  Google Scholar 

  86. Rajendran, S. K., & Sundaram, L. (2020). Degradation of heavy metal contaminated soil using plant growth promoting rhizobacteria (PGPR): Assess their remediation potential and growth influence of Vigna radiata L. International Journal Agriculture Technology, 16(2), 365–376.

    CAS  Google Scholar 

  87. Rajkumar, M., Ae, N., Prasad, M. N. V., et al. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28(3), 142–149. https://doi.org/10.1016/j.tibtech.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  88. Rehan, M., & Alsohim, A. S. (2019). Bioremediation of heavy metals. In Environmental Chemistry and Recent Pollution Control Approaches, chapter 8, 145–158.

  89. Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, Article ID 2568038.

  90. Mohamed, R. M., & Abo-Amer, A. E. (2012). Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. Journal of Basic Microbiology, 52(1), 53–65.

    Article  CAS  PubMed  Google Scholar 

  91. Silver, S., & Phung, L. T. (2005). A bacterial view of the periodic table: Genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology, 32(11–12), 587–605.

    Article  CAS  PubMed  Google Scholar 

  92. Rizvi, A., Ahmed, B., Zaidi, A., et al. (2020). Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: An efficient metal clean-up strategy. Environmental Monitoring and Assessment, 192(12), 1–21. https://doi.org/10.1007/s10661-020-08758-5

    Article  CAS  Google Scholar 

  93. Rodriguesa, A. A. Z., De Queiroz, M. E. L. R., Oliveira, A. F., et al. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 52, 1–8. https://doi.org/10.1080/03601234.2017.1359049

    Article  CAS  Google Scholar 

  94. Šoštarić, T. D., Petrović, M. S., Pastor, F. T., et al. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340–349. https://doi.org/10.1016/j.molliq.2018.03.055

    Article  CAS  Google Scholar 

  95. Sagar A., Riyazuddin R., Shukla P. K., et al. (2020). Heavy metal stress tolerance in Enterobacter sp. PR14 is mediated by plasmid. Indian Journal Experimental Biology, 58:115–121. https://nopr.niscair.res.in/handle/123456789/53518

  96. Sayqal, A., & Ahmed, O. B. (2021). Advances in heavy metal bioremediation: An overview. Applied Bionics and Biomechanics, 2021, 1609149.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sharma, I. (2020). Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. In: Trace metals in the environment-new approaches and recent advances, Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña, Agnieszka Saeid (eds.), IntechOpen, London, United Kingdom, p 263.

  98. Salam, L. B., Shomope, H., Ummi, Z., et al. (2019). Mercury contamination imposes structural shift on the microbial community of an agricultural soil. Bulletin National Research Centre, 43, 163. https://doi.org/10.1186/s42269-019-0208-5

    Article  Google Scholar 

  99. Sayyed, R. Z., Seifi, S., Patel, P. R., et al. (2019). Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environmental Sustainability, 2(2), 117–24. https://doi.org/10.1007/s42398-019-00070-4

    Article  CAS  Google Scholar 

  100. Schalk, I. J., Hannauer, M., & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 13(11), 2844–2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

    Article  CAS  PubMed  Google Scholar 

  101. Seneviratne M., Seneviratne G., Madawal H., et al. (2017). Role of rhizospheric microbes in heavy metal uptake by plants, In: Singh J., Seneviratne G. (eds) Agro environmental sustainability. Springer, p 147–163. https://doi.org/10.1007/978-3-319-49727-3_8

  102. Senthil Kumar, P., & Gunasundari, E. (2017). Bioremediation of heavy metals-book chapter, bioremed (pp. 165–195). Springer Publications.

    Google Scholar 

  103. Sharma, H. D., & Reddy, K. R. (Eds.). (2004). Geoenvironmental engineering. John Wiley & Sons Inc.

    Google Scholar 

  104. Sheoran, V., Sheoran, A. S., & Poonia, P. (2011). Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Critical Reviews in Environment Science and Technology, 41(2), 168–214. https://doi.org/10.1080/10643380902718418

    Article  Google Scholar 

  105. Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: A review. Pedosphere, 26(2), 148–166. https://doi.org/10.1016/S1002-0160(15)60032-7

    Article  CAS  Google Scholar 

  106. Shishir T., Mahbub N. (2019). Review on bioremediation: A tool to resurrect the polluted rivers. Pollution 5(3):555–568. https://doi.org/10.22059/POLL.2019.272339.558

  107. Singh, S., & Gupta, V. K. (2016). Biodegradation and bioremediation of pollutants: Perspectives strategies and applications. International Journal of Pharmacy and Biological Sciences, 10(1), 53.

    Google Scholar 

  108. Singh, J. S., Abhilash, P. C., Singh, H. B., et al. (2011). Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene, 480, 1–9. https://doi.org/10.1016/j.gene.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  109. Stearns, J. C., Shah, S., Greenberg, B. M., et al. (2005). Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry, 43(7), 701–708. https://doi.org/10.1016/j.plaphy.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  110. Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skep Critical, 3(2), 24. https://doi.org/10.0000/issn-2224-4263-environsc-2014-v3-0004

    Article  Google Scholar 

  111. Sung, C. Y., & Park, C. B. (2018). The effect of site- and landscape-scale factors on lead contamination of leafy vegetables grown in urban gardens. Landscape and Urban Planning, 177, 38–46. https://doi.org/10.1016/j.landurbplan.2018.04.013

    Article  Google Scholar 

  112. Taamalli, M., Ghabriche, R., Amari, T., et al. (2014). Comparative study of Cd tolerance and accumulation potential between Cakile maritima. L (halophyte) and Brassica juncea L. Ecological Engineering, 71, 623–627. https://doi.org/10.1016/j.ecoleng.2014.08.013

    Article  Google Scholar 

  113. Tara, N., Arslan, M., Hussain, Z., et al. (2019). On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541–548. https://doi.org/10.1016/j.jclepro.2019.01.258

    Article  CAS  Google Scholar 

  114. Tighadouini S., Radi S., Anannaz M., et al. (2018). Engineering β-ketoenol structure functionality in hybrid silica as excellent adsorbent material for removal of heavy metals from water. New Journal of Chemistry 42:13229–13240. http://hdl.handle.net/2078.1/200198.

  115. Vardar, G., Barbieri, P., & Wood, T. K. (2005). Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Applied Microbiology and Biotechnology, 66(6), 696–701. https://doi.org/10.1007/s00253-004-1685-4

    Article  CAS  PubMed  Google Scholar 

  116. Velkova, Z., Kirova, G., Stoytcheva, M., et al. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18(12), 871–881. https://doi.org/10.1002/elsc.201800017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weyens, N., Lelie, D. V., Taghavi, S., et al. (2009). Exploiting plant microbe partnership to improve biomass production and remediation. Trends in Biotechnology, 27(10), 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  118. Whelan, M. J., Coulon, F., Hince, G., et al. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232–240. https://doi.org/10.1016/j.chemosphere.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  119. Wood, T. K. (2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19(6), 572–578. https://doi.org/10.1016/j.copbio.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  120. Wu, C. H., Wood, T. K., Mulchandani, A., et al. (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environment Microbiology, 72(2), 1129–1134.

    Article  CAS  Google Scholar 

  121. Wu, X., Cobbina, S. J., Mao, G., et al. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23, 8244–8259. https://doi.org/10.1007/s11356-016-6333-x

    Article  CAS  PubMed  Google Scholar 

  122. Xu, C., He, S., Liu, Y., et al. (2017). Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU. Chemosphere, 173, 622–629. https://doi.org/10.1016/j.chemosphere.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  123. Yan, A., Wang, Y., Tan, S. N., et al. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yan, G., Ma, W., Chen, C., et al. (2016). Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soils. Clean-Soil Air Water, 44(8), 984–991. https://doi.org/10.1002/clen.201500571

    Article  CAS  Google Scholar 

  125. Yang, P., Liu, Q., Liu, J., et al. (2017). Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium (VI). Journal Materials Chemistry, 17933, 17942. https://doi.org/10.1039/C8TA90090F

    Article  Google Scholar 

  126. Zhao Y. P., Cui J. L., Chan T. S., et al. (2018). Role of chelant on Cu distribution and speciation in Lolium multiflorum by synchrotron techniques. Science of the Total Environment, 621:772e78. https://doi.org/10.1016/j.scitotenv.2017.11.189

  127. Zhou, J., Zhang, Z., Zhang, Y., et al. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 13, e0191139. https://doi.org/10.1371/journal.pone.0191139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhu, X., Li, W., Zhan, L., et al. (2016). The largescale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149–155. https://doi.org/10.1016/j.envpol.2016.10.047

    Article  CAS  PubMed  Google Scholar 

  129. Zubair, M., Shakir, M., Ali, Q., et al. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Review, 5(1), 112–119. https://doi.org/10.1080/21622515.2016.1259358

    Article  Google Scholar 

  130. Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1-7.

  131. Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.

  132. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P., & Martínez, J. L. (2016). Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Frontiers in microbiology, 7, 1483.

Download references

Acknowledgements

The corresponding author is grateful to the Aligarh Muslim University, Aligarh, for providing facilities to accomplish the work. Fatmah M. Alqahtani and Mohamed Hashem extend their appreciation to the Deanship of Scientific Research, King Khalid University, for funding the work through the research groups program under grant number R.G.P. 2/205/44.

Author information

Authors and Affiliations

Authors

Contributions

FA-conceptualization; RG and FA-data curation and formal analysis; RG, FK, and FA-original draft preparation; RG-visualization; FA, FK, FMA, and MH-writing—review and editing; FA-supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Faheem Ahmad.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Khan, F., Alqahtani, F.M. et al. Plant Growth–Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl Biochem Biotechnol 196, 2928–2956 (2024). https://doi.org/10.1007/s12010-023-04545-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04545-3

Keywords

Navigation