Skip to main content

Advertisement

Log in

Expression and Purification of FGFR1-Fc Fusion Protein and Its Effects on Human Lung Squamous Carcinoma

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and materials are true and reliable.

References

  1. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F., & Heist, R. S. (2021). Lung cancer. Lancet, 398, 535–554. https://doi.org/10.1016/S0140-6736(21)00312-3

    Article  PubMed  Google Scholar 

  2. Drilon, A., Rekhtman, N., Ladanyi, M., & Paik, P. (2012). Squamous-cell carcinomas of the lung: Emerging biology, controversies, and the promise of targeted therapy. Lancet Oncology, 13, e418–e426. https://doi.org/10.1016/S1470-2045(12)70291-7

    Article  CAS  PubMed  Google Scholar 

  3. Rich, A. L., Khakwani, A., Free, C. M., Tata, L. J., Stanley, R. A., Peake, M. D., et al. (2015). Non-small cell lung cancer in young adults: Presentation and survival in the English National Lung Cancer Audit. QJM: An International Journal of Medicine, 108, 891–897. https://doi.org/10.1093/qjmed/hcv052

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, Z., Yu, C., Cui, S., Wang, H., Jin, H., Wang, C., et al. (2019). circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nature Communications, 10, 3200. https://doi.org/10.1038/s41467-019-11162-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gandara, D. R., Hammerman, P. S., Sos, M. L., Lara, P. N., Jr., & Hirsch, F. R. (2015). Squamous cell lung cancer: from tumor genomics to cancer therapeutics. Clinical Cancer Research, 21, 2236–2243. https://doi.org/10.1158/1078-0432.CCR-14-3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Momcilovic, M., Bailey, S. T., Lee, J. T., Fishbein, M. C., Braas, D., Go, J., et al. (2018). The GSK3 signaling axis regulates adaptive glutamine metabolism in lung squamous cell carcinoma. Cancer Cell, 33(5), 905–921. https://doi.org/10.1016/j.ccell.2018.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodwin, J., Neugent, M. L., Lee, S. Y., Choe, J. H., Choi, H., Jenkins, D. M. R., et al. (2017). The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 8, 15503. https://doi.org/10.1038/ncomms15503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beenken, A., & Mohammadi, M. (2009). The FGF family: Biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 8, 235–253. https://doi.org/10.1038/nrd2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katoh, M., & Nakagama, H. (2014). FGF receptors: Cancer biology and therapeutics. Medicinal Research Reviews, 34, 280–300. https://doi.org/10.1002/med.21288

    Article  CAS  PubMed  Google Scholar 

  10. Babina, I. S., & Turner, N. C. (2017). Advances and challenges in targeting FGFR signalling in cancer. Nature Reviews Cancer, 17, 318–332. https://doi.org/10.1038/nrc.2017.8

    Article  CAS  PubMed  Google Scholar 

  11. Katoh, M. (2016). Therapeutics targeting FGF signaling network in human diseases. Trends in Pharmacological Sciences, 37, 1081–1096. https://doi.org/10.1016/j.tips.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Hashemi-Sadraei, N., & Hanna, N. (2017). Targeting FGFR in squamous cell carcinoma of the lung. Target Oncology, 12, 741–755. https://doi.org/10.1007/s11523-017-0513-6

    Article  Google Scholar 

  13. Yuan, H., Li, Z. M., Shao, J., Ji, W. X., Xia, W., & Lu, S. (2017). FGF2/FGFR1 regulates autophagy in FGFR1-amplified non-small cell lung cancer cells. Journal of Experimental & Clinical Cancer Research, 36, 72. https://doi.org/10.1186/s13046-017-0534-0

    Article  CAS  Google Scholar 

  14. Marek, L., Ware, K. E., Fritzsche, A., Hercule, P., Helton, W. R., Smith, J. E., et al. (2009). Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Molecular Pharmacology, 75, 196–207. https://doi.org/10.1124/mol.108.049544

    Article  CAS  PubMed  Google Scholar 

  15. Loriot, Y., Necchi, A., Park, S. H., Garcia-Donas, J., Huddart, R., Burgess, E., et al. (2019). Erdafitinib in locally advanced or metastatic urothelial carcinoma. New England Journal of Medicine, 381, 338–348. https://doi.org/10.1056/NEJMoa1817323

    Article  CAS  PubMed  Google Scholar 

  16. Abou-Alfa, G. K., Sahai, V., Hollebecque, A., Vaccaro, G., Melisi, D., Al-Rajabi, R., et al. (2020). Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncology, 21, 671–684. https://doi.org/10.1016/S1470-2045(20)30109-1

    Article  CAS  PubMed  Google Scholar 

  17. Goyal, L., Shi, L., Liu, L. Y., Fece de la Cruz, F., Lennerz, J. K., Raghavan, S., et al. (2019). TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discovery, 98, 1064-1079. https://doi.org/10.1158/2159-8290.CD-19-0182.

  18. Chen, L., Fu, W., Zheng, L., Liu, Z., & Liang, G. (2018). Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797s resistance in non-small-cell lung cancer. Journal of Medicinal Chemistry, 61, 4290–4300. https://doi.org/10.1021/acs.jmedchem.7b01310

    Article  CAS  PubMed  Google Scholar 

  19. Katoh, M. (2016). FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). International Journal of Molecular Medicine, 38, 3–15. https://doi.org/10.3892/ijmm.2016.2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harding, T. C., Long, L., Palencia, S., Zhang, H., Sadra, A., Hestir, K., et al. (2013). Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Science Translational Medicine, 5, 178ra139. https://doi.org/10.1126/scitranslmed.3005414

    Article  CAS  Google Scholar 

  21. Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews, 16, 139–149. https://doi.org/10.1016/j.cytogfr.2005.01.001

    Article  CAS  Google Scholar 

  22. Xie, Y., Zinkle, A., Chen, L., & Mohammadi, M. (2020). Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nature Reviews Rheumatology, 16, 547–564. https://doi.org/10.1038/s41584-020-0469-2

    Article  CAS  PubMed  Google Scholar 

  23. Itoh, N., & Ornitz, D. M. (2011). Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. The Journal of Biochemistry, 149, 121–130. https://doi.org/10.1093/jb/mvq121

    Article  CAS  PubMed  Google Scholar 

  24. Malchers, F., Dietlein, F., Schottle, J., Lu, X., Nogova, L., Albus, K., et al. (2014). Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discovery, 4, 246–257. https://doi.org/10.1158/2159-8290.CD-13-0323

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H. R., Kim, D. J., Kang, D. R., Lee, J. G., Lim, S. M., Lee, C. Y., et al. (2013). Fibroblast growth factor receptor 1 gene amplification is associated with poor survival and cigarette smoking dosage in patients with resected squamous cell lung cancer. Journal of Clinical Oncology, 31, 731–737. https://doi.org/10.1200/JCO.2012.43.8622

    Article  PubMed  Google Scholar 

  26. Turner, N., Pearson, A., Sharpe, R., Lambros, M., Geyer, F., Lopez-Garcia, M. A., et al. (2010). FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Research, 70, 2085–2094. https://doi.org/10.1158/0008-5472.CAN-09-3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flockerzi, F. A., Roggia, C., Langer, F., Holleczek, B., & Bohle, R. M. (2017). FGFR1 gene amplification in squamous cell carcinomas of the lung: A potential favorable prognostic marker for women and for patients with advanced cancer. Virchows Archiv, 472, 759–769. https://doi.org/10.1007/s00428-017-2282-0

    Article  CAS  PubMed  Google Scholar 

  28. Soleimanpour, S., Hassannia, T., Motiee, M., Amini, A. A., & Rezaee, S. A. (2017). Fcgamma1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: Immunological, biochemical and therapeutic properties. Critical Reviews in Biotechnology, 37, 371–392. https://doi.org/10.3109/07388551.2016.1163323

    Article  CAS  PubMed  Google Scholar 

  29. Unverdorben, F., Richter, F., Hutt, M., Seifert, O., Malinge, P., Fischer, N., et al. (2016). Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs, 8, 120–128. https://doi.org/10.1080/19420862.2015.1113360

    Article  CAS  PubMed  Google Scholar 

  30. Long, L., Brennan, T., Zanghi, J., Palencia, S., Cheung, R., Aguirre, M., Powers, J., Dean, R., Giese, S., Keer, H., Masuoka, L., Doberstein, S., Minmin, Q., Hestir, K., Williams, L., Baker, K., et al. (2009). Antitumor efficacy of FP-1039, a soluble FGF receptor 1:Fc conjugate, as a single agent or in combination with anticancer drugs. Experimental and Molecular Therapeutics, 69(9).

Download references

Funding

This work was supported by the Natural Science Funding of Zhejiang Province (LYY19H310006 to L.Z., Y21H150027) and the Science and technology plan project of Wenzhou City (Y20150105).

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception and design: L. Zheng; (II) Administrative support: Q. Hui, B. Liu, X. Wang; (III) Provision of study materials or patients: L. Chen; (IV) Collection and assembly of data: H. Liu, X You; (V) Data analysis and interpretation: F Lv, H. Fan; (VI) Organize and reply to major revision: H. Wang; (VII) Manuscript writing: All authors; (VIII) Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Qi Hui, Baohua Liu or Xiaojie Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Liu, H., Chen, L. et al. Expression and Purification of FGFR1-Fc Fusion Protein and Its Effects on Human Lung Squamous Carcinoma. Appl Biochem Biotechnol 196, 573–587 (2024). https://doi.org/10.1007/s12010-023-04542-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04542-6

Keywords

Navigation