Skip to main content

Advertisement

Log in

Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the potential of bagasse pith (the waste of sugar and paper industry) was investigated for bio-xylitol production for the first time. Xylose-rich hydrolysate was prepared using 8% dilute sulfuric acid, at 120 °C for 90 min. Then, the acid-hydrolyzed solution was detoxified by individual overliming (OL), active carbon (AC), and their combination (OL+AC). The amounts of reducing sugars and inhibitors (furfural and hydroxyl methyl furfural) were measured after acid pre-treatment and detoxification process. Thereafter, xylitol was produced from detoxified hydrolysate by Rhodotorula mucilaginosa yeast. Results showed that after acid hydrolysis, the sugar yield was 20%. Detoxification by overliming and active carbon methods increased the reducing sugar content up to 65% and 36% and decreased the concentration of inhibitors to >90% and 16%, respectively. Also, combined detoxification caused an increase in the reducing sugar content (>73%) and a complete removal of inhibitors. The highest productivity of xylitol (0.366 g/g) by yeast was attained after the addition of 100 g/l non-detoxified xylose-rich hydrolysate into fermentation broth after 96 h, while the xylitol productivity enhanced to 0.496 g/g after adding the similar amount of xylose-rich hydrolysate detoxified by combined method (OL+AC2.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hyvönen, L., Koivistoinen, P., & Voirol, F. (1982). Food technological evaluation of xylitol. In Advances in food research (Vol. 28, pp. 373–403). Elsevier. https://doi.org/10.1016/S0065-2628(08)60114-7

    Chapter  Google Scholar 

  2. Lif Holgerson, P., Stecksén-Blicks, C., Sjöström, I., Öberg, M., & Twetman, S. (2006). Xylitol concentration in saliva and dental plaque after use of various xylitol-containing products. Caries Research, 40(5), 393–397. https://doi.org/10.1159/000094284

    Article  CAS  PubMed  Google Scholar 

  3. Altamirano, A., Vázquez, F., & De Figueroa, L. I. C. (2000). Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia Microbiologica, 45(3), 255–258. https://doi.org/10.1007/BF02908955

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, K., Singh, E., & Shrivastava, S. (2022). Microbial xylitol production. Applied Microbiology and Biotechnology, 106(3), 971–979. https://doi.org/10.1007/s00253-022-11793-6

    Article  CAS  PubMed  Google Scholar 

  5. Hans, M., Yadav, N., Kumar, S., & Chandel, A. K. (2022). Market, global demand and consumption trend of xylitol. In Current Advances in Biotechnological Production of Xylitol (pp. 239–251). Springer International Publishing. https://doi.org/10.1007/978-3-031-04942-2_11

    Chapter  Google Scholar 

  6. Delgado Arcaño, Y., Valmaña García, O. D., Mandelli, D., Carvalho, W. A., & Magalhães Pontes, L. A. (2020). Xylitol: A review on the progress and challenges of its production by chemical route. Catalysis Today, 344, 2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  CAS  Google Scholar 

  7. Rita de Cássia, L. B., Rocha, G. J., Rodrigues, D., Jr., Helcio Filho, J. I., Maria das Graças, A. F., & Pessoa, A., Jr. (2010). Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresource Technology, 101(4), 1247–1253. https://doi.org/10.1016/j.biortech.2009.09.034

    Article  CAS  Google Scholar 

  8. Canilha, L., Santos, V. T. O., Rocha, G. J. M., Almeida de Silva, J. B., Giulietti, M., Silva, S. S., Felipe, M. G., Ferraz, A., Milagres, A. M., & Carvalho, W. (2011). A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology & Biotechnology, 38(9), 1467–1475. https://doi.org/10.1007/s10295-010-0931-2

    Article  CAS  Google Scholar 

  9. Mikkola, J.-P., Vainio, H., Salmi, T., Sjöholm, R., Ollonqvist, T., & Väyrynen, J. (2000). Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Applied Catalysis A: General, 196(1), 143–155. https://doi.org/10.1016/S0926-860X(99)00453-6

    Article  CAS  Google Scholar 

  10. Choi, J.-H., Moon, K.-H., Ryu, Y.-W., & Seo, J.-H. (2000). Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnology Letters, 22(20), 1625–1628. https://doi.org/10.1023/A:1005693427389

    Article  CAS  Google Scholar 

  11. Cheng, K.-K., Ling, H.-Z., Zhang, J.-A., Ping, W.-X., Huang, W., Ge, J.-P., & Xu, J.-M. (2010). Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnology & Biotechnological Equipment, 24(1), 1606–1611. https://doi.org/10.2478/V10133-010-0013-7

    Article  CAS  Google Scholar 

  12. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279–291. https://doi.org/10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  13. Meng, J., Chroumpi, T., Mäkelä, M. R., & de Vries, R. P. (2022). Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. Bioresource Technology, 344, 126199. https://doi.org/10.1016/j.biortech.2021.126199

    Article  CAS  PubMed  Google Scholar 

  14. Rao, R. S., Bhadra, B., & Shivaji, S. (2007). Isolation and characterization of xylitol-producing yeasts from the gut of Colleopteran insects. Current Microbiology, 55(5), 441–446. https://doi.org/10.1007/s00284-007-9005-8

    Article  CAS  PubMed  Google Scholar 

  15. Bura, R., Vajzovic, A., & Doty, S. L. (2012). Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. Journal of Industrial Microbiology and Biotechnology, 39(7), 1003–1011. https://doi.org/10.1007/s10295-012-1109-x

    Article  CAS  PubMed  Google Scholar 

  16. Asgari, F., Ghezelbash, G. R., & Nahvi, I. (2015). The study of xylitol production by Rhodotorula mucilaginosa isolated from nature. Journal of food science and technology ( Iran), 12(47), 21–30 Retrieved from http://fsct.modares.ac.ir/article-7-7365-en.html

    Google Scholar 

  17. Bedő, S., Fehér, A., Khunnonkwao, P., Jantama, K., & Fehér, C. (2021). Optimized bioconversion of xylose derived from pre-treated crop residues into xylitol by using Candida boidinii. Agronomy, 11(1), 79. https://doi.org/10.3390/agronomy11010079

    Article  CAS  Google Scholar 

  18. Niu, Q., Gao, K., Tang, Q., Wang, L., Han, L., Fang, H., et al. (2017). Large-size graphene-like porous carbon nanosheets with controllable N-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors. Carbon, 123, 290–298. https://doi.org/10.1016/j.carbon.2017.07.078

    Article  CAS  Google Scholar 

  19. Ahuja, V., Bhatt, A. K., Mehta, S., Sharma, V., Rathour, R. K., & Sheetal. (2022). Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis. Bioprocess and Biosystems Engineering, 45(6), 1019–1031. https://doi.org/10.1007/s00449-022-02721-z

    Article  CAS  PubMed  Google Scholar 

  20. Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8(1), 87. https://doi.org/10.1186/s40643-021-00440-z

    Article  Google Scholar 

  21. Cavka, A., & Jönsson, L. J. (2013). Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresource Technology, 136, 368–376. https://doi.org/10.1016/j.biortech.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  22. Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  23. Vallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E., & Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161–169. https://doi.org/10.1016/j.indcrop.2016.07.007

    Article  CAS  Google Scholar 

  24. Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 102(2), 1254–1263. https://doi.org/10.1016/j.biortech.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  25. Jain, R. K., Thakur, V. V., Pandey, D., Adhikari, D. K., Dixit, A. K., & Mathur, R. M. (2011). Bioethanol from bagasse pith a lignocellulosic waste biomass from paper/sugar industry. IPPTA, 23, 169–173.

    CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  27. Marton, J. M., Felipe, M. G. A., Almeida de Silva, J. B., & Pessoa Junior, A. (2006). Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Brazilian Journal of Chemical Engineering, 23, 9–21.

    Article  CAS  Google Scholar 

  28. Converti, A., Domínguez, J. M., Perego, P., da Silva, S. S., & Zilli, M. (2000). Wood hydrolysis and hydrolyzate detoxification for subsequent xylitol production. Chemical Engineering & Technology, 23(11), 1013–1020. https://doi.org/10.1002/1521-4125(200011)23:11<1013::AID-CEAT1013>3.0.CO;2-C

    Article  CAS  Google Scholar 

  29. Jin, T., Xing, X., Xie, Y., Sun, Y., Bian, S., Liu, L., et al. (2022). Evaluation of preparation and detoxification of hemicellulose hydrolysate for improved xylitol production from quinoa straw. International Journal of Molecular Sciences, 24(1), 516. https://doi.org/10.3390/ijms24010516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tavares, A. P. M., Gonçalves, M. J. A., Brás, T., Pesce, G. R., Xavier, A. M. R. B., & Fernandes, M. C. (2022). Cardoon hydrolysate detoxification by activated carbon or membranes system for bioethanol production. Energies, 15(6), 1993. https://doi.org/10.3390/en15061993

    Article  CAS  Google Scholar 

  31. Hong, J.-W., Gam, D.-H., Kim, J.-H., Jeon, S.-J., Kim, H.-S., & Kim, J.-W. (2021). Process development for the detoxification of fermentation inhibitors from acid pretreated microalgae hydrolysate. Molecules, 26(9), 2435. https://doi.org/10.3390/molecules26092435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dai, L., Jiang, W., Zhou, X., & Xu, Y. (2020). Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Bioresource Technology, 316, 123944. https://doi.org/10.1016/j.biortech.2020.123944

    Article  CAS  PubMed  Google Scholar 

  33. Arminda, M., Josúe, C., Cristina, D., Fabiana, S., & Yolanda, M. (2021). Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation. Journal of Environmental Management, 296, 113320. https://doi.org/10.1016/j.jenvman.2021.113320

    Article  CAS  PubMed  Google Scholar 

  34. Deng, F., Cheong, D.-Y., & Aita, G. M. (2018). Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Industrial Crops and Products, 115, 166–173. https://doi.org/10.1016/j.indcrop.2018.02.030

    Article  CAS  Google Scholar 

  35. Lee, J. M., Venditti, R. A., Jameel, H., & Kenealy, W. R. (2011). Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass and Bioenergy, 35(1), 626–636. https://doi.org/10.1016/j.biombioe.2010.10.021

    Article  CAS  Google Scholar 

  36. Sene, L., Vitolo, M., Felipe, M. G. A., & Silva, S. S. (2000). Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Applied Biochemistry and Biotechnology, 84(1–9), 371–380. https://doi.org/10.1385/ABAB:84-86:1-9:371

    Article  PubMed  Google Scholar 

  37. Chi, C., Zhang, Z., Chang, H., & Jameel, H. (2009). Determination of furfural and hydroxymethylfurfural formed from biomass under acidic conditions. Journal of Wood Chemistry and Technology, 29(4), 265–276. https://doi.org/10.1080/02773810903096025

    Article  CAS  Google Scholar 

  38. Zhang, J., Li, J., Tang, Y., & Xue, G. (2013). Rapid method for the determination of 5-hydroxymethylfurfural and levulinic acid using a double-wavelength UV spectroscopy. The Scientific World Journal, 2013, 1–6. https://doi.org/10.1155/2013/506329

    Article  CAS  Google Scholar 

  39. Bok, S. H., & Demain, A. L. (1977). An improved colorimetric assay for polyols. Analytical Biochemistry, 81(1), 18–20. https://doi.org/10.1016/0003-2697(77)90593-0

    Article  CAS  PubMed  Google Scholar 

  40. Kamal, S. M. M., Mohamad, N. L., Abdullah, A. G. L., & Abdullah, N. (2011). Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Science, 1, 908–913. https://doi.org/10.1016/j.profoo.2011.09.137

    Article  CAS  Google Scholar 

  41. Ahuja, V., Kshirsagar, S., Ghosh, P., Sarkar, B., Sutar, A., More, S., & Dasgupta, D. (2022). Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. Journal of Environmental Chemical Engineering, 10(1), 107097. https://doi.org/10.1016/j.jece.2021.107097

    Article  CAS  Google Scholar 

  42. Meinita, M. D. N., Hong, Y.-K., & Jeong, G.-T. (2012). Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering, 35(1–2), 93–98. https://doi.org/10.1007/s00449-011-0608-x

    Article  CAS  PubMed  Google Scholar 

  43. Candido, J. P., Claro, E. M. T., de Paula, C. B. C., Shimizu, F. L., de Oliveria Leite, D. A. N., Brienzo, M., de Angelis, D., & de F. (2020). Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World Journal of Microbiology and Biotechnology, 36(3), 43. https://doi.org/10.1007/s11274-020-02820-7

    Article  CAS  PubMed  Google Scholar 

  44. Mussatto, S. I., Santos, J. C., & Roberto, I. C. (2004). Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. Journal of Chemical Technology & Biotechnology, 79(6), 590–596. https://doi.org/10.1002/jctb.1026

    Article  CAS  Google Scholar 

  45. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., & Wooley, R. J. (2000). The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme and Microbial Technology, 27(3–5), 240–247. https://doi.org/10.1016/S0141-0229(00)00216-7

    Article  CAS  PubMed  Google Scholar 

  46. Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  47. Shankar, K., Kulkarni, N. S., Sajjanshetty, R., Jayalakshmi, S. K., & Sreeramulu, K. (2020). Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Industrial Crops and Products, 155, 112809. https://doi.org/10.1016/j.indcrop.2020.112809

    Article  CAS  Google Scholar 

  48. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 17(2), 287–293. https://doi.org/10.1021/bp0001720

    Article  CAS  PubMed  Google Scholar 

  49. Fang, K., & Yang, R. (2021). Modified activated carbon by air oxidation as a potential adsorbent for furfural removal. Alexandria Engineering Journal, 60(2), 2325–2333. https://doi.org/10.1016/j.aej.2020.12.032

    Article  Google Scholar 

  50. Mussatto, S. I., & Roberto, I. (2001). Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters, 23(20), 1681–1684. https://doi.org/10.1023/A:1012492028646

    Article  CAS  Google Scholar 

  51. Chaud, L. C. S., Arruda, P. V., Sene, L., & Felipe, M. G. A. (2010). Comparison of detoxification methodologies for sugarcane bagasse hemicellulosic hydrolysate based on active charcoal and vegetal polymer aiming at biotechnological xylitol production. Journal of Biotechnology, 150, 365–365. https://doi.org/10.1016/j.jbiotec.2010.09.429

    Article  Google Scholar 

  52. Narisetty, V., Castro, E., Durgapal, S., Coulon, F., Jacob, S., Kumar, D., et al. (2021). High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresource Technology, 342, 126005. https://doi.org/10.1016/j.biortech.2021.126005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahuja, V., Macho, M., Ewe, D., Singh, M., Saha, S., & Saurav, K. (2020). Biological and pharmacological potential of xylitol: A molecular insight of unique metabolism. Foods, 9(11), 1592. https://doi.org/10.3390/foods9111592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Umai, D., Kayalvizhi, R., Kumar, V., & Jacob, S. (2022). Xylitol: Bioproduction and applications-A review. Frontiers in Sustainability, 3. https://doi.org/10.3389/frsus.2022.826190

  55. Jagtap, S. S., & Rao, C. V. (2018). Microbial conversion of xylose into useful bioproducts. Applied Microbiology and Biotechnology, 102(21), 9015–9036. https://doi.org/10.1007/s00253-018-9294-9

    Article  CAS  PubMed  Google Scholar 

  56. Dasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research, 197, 9–21. https://doi.org/10.1016/j.micres.2016.12.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Niloufar Davoodi PahnehKolaei, Esmaeil Rasooly Garmaroody, and Omid Ramezani. The first draft of the manuscript was written by Sepideh Hamedi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Omid Ramezani.

Ethics declarations

Ethics Approval

The research does not deal with human nor animal data.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmaroody, E.R., PahnehKolaei, N.D., Ramezani, O. et al. Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa. Appl Biochem Biotechnol 196, 129–144 (2024). https://doi.org/10.1007/s12010-023-04539-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04539-1

Keywords

Navigation