Skip to main content
Log in

To Assess the Role of microRNA-451 in the Progression and Metastasis of Colorectal Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The study aimed to determine the expression of miR451 in colorectal cancer (CRC) subjects with CRC cells, and the role of miR451 in colorectal cancer cells. In October 2020, ATC purchased CRC and normal mucosal cell lines of CRC and implanted them in DMEM with 10% fetal serum. The suitability of the HT29 cell line is verified using the STR profile. In an incubator with 5% CO2, enlarged cells were placed at 37 °C. TCGA data was used to select the top 120 patients with a high voice and the lowest 120 patients with a low voice. Cells were collected and coated with Annexin V and PE according to the manufacturer’s instructions after 24.0 h. After that, the cells were separated. Cells were also tested using flow cytometry. HCT-120 cells were transplanted into a concentration of 5×105/ml cells in 6-source plates. HCT120 cells in the experimental group were combined with miR451 mimics, miR451 inhibitors, or miR451 miR + SMAD4B for 12 h at 37 °C, and cells were collected 24 h later at 37 °C. The sample was injected with 5 ml of Annexin VFITC and PE. Compared with normal colorectal mucosal cells, CRC cell lines decreased miR451 expression levels (fetal human cells (FHC) and HCoEpiC). Then, the HCT120 cells were transfected with miR451 inhibitors, and 72 h after transfection, say of miR451 was normal. There was a significant decrease in cell function in the miR451mimic groups, but an increase when the miR451 was blocked. The proliferation of cancer cells was prevented and chemotherapy was effective when miR451 was overexpressed. The SMAD4 gene provides instructions for making a protein involved in transmitting chemical signals from the cell surface to the nucleus. The SMAD4B expression was tested by RT-qPCR and Western blotting after 72.0 h of transmission. The mRNA and protein expression of SMAD4B decreased significantly when miR451 was significantly higher than when inhibited, as revealed in the results of this study. Seventy-two hours after transplantation, mRNA levels and SMAD4B proteins were measured in HCT120 cells. In addition, the researchers in this study investigated whether miR451 was associated with SMAD4B-directed control of CRC growth and migration. It was found that SMAD4B is highly expressed in both CRC and para-cancer tissues while using the TCGA database to detect SMAD4B expression. Patients with CRC with SMAD4B have a severe prognosis. MiR451 is sensitive to depressive disorders by targeting SMAD4B, according to these studies. We found that miR451 inhibited cell growth and migration, made CRC cells more readily available in chemotherapy, and did so by targeting SMAD4B. The findings suggest that miR451 and its genetic predisposition, SMAD4B, may help predict the prognosis and course of cancer patients. Treatments that target the miR451/SMAD4B axis may be helpful to people with CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data associated with the research has been presented in this paper.

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer Statistics, 2009. CA: a cancer journal for clinicians, 4(2009), 225–249.

    Google Scholar 

  2. Weitz, J., Koch, M., Debus, J., Höhler, T., Galle, P. R., & Büchler, M. W. (2005). Colorectal cancer. Lancet, 365, 153–165.

    Article  PubMed  Google Scholar 

  3. Itatani, Y., Kawada, K., Fujishita, T., Kakizaki, F., Hirai, H., Matsumoto, T., et al. (2013). Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. Gastroenterology, 145, 1064–1075.

    Article  CAS  PubMed  Google Scholar 

  4. Aghakhani, A., Hamkar, R., Ramezani, A., BidariZerehpoosh, F., Sabeti, S., Ghavami, N., et al. (2014). Lack of human papillomavirus DNA in colon adenocarcinama and adenoma. Journal of Cancer Research and Therapeutics, 10, 531–534.

    Article  PubMed  Google Scholar 

  5. Zhang, Y., Wang, Z., Lin, C., Liang, X., Liao, G., Li, B., et al. (2015). MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2. Oncotarget, 6, 32586–32601.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, L., Wang, J., Fu, L., Zhang, B., Zhang, H., & Ye, B. (2014). Prognostic significance of metastasis-associated in colon cancer 1 (MACC1) expression in patients with gallbladder cancer. Journal of Cancer Research and Therapeutics, 10, 1052–1056.

    Article  PubMed  Google Scholar 

  7. Denoyelle, C., Hong, L., Vannier, J. P., Soria, J., & Soria, C. (2003). New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. British Journal of Cancer, 88, 1631–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsai, K. W., Hu, L. Y., Chen, T. W., Li, S. C., Ho, M. R., Yu, S. Y., et al. (2015). Emerging role of microRNAs in modulating endothelin-1 expression in gastric cancer. Oncology Reports, 33, 485–493.

    Article  CAS  PubMed  Google Scholar 

  9. Tian, X., Wei, Z., Wang, J., Liu, P., Qin, Y., & Zhong, M. (2015). MicroRNA-429 inhibits the migration and invasion of colon cancer cells by targeting PAK6/cofilin signaling. Oncology Reports, 34, 707–714.

    Article  CAS  PubMed  Google Scholar 

  10. Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., & James, R. J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.

    CAS  PubMed  Google Scholar 

  11. Melo, S. A., Ropero, S., Moutinho, C., Aaltonen, L. A., Yamamoto, H., Calin, G. A., Rossi, S., Fernandez, A. F., Carneiro, F., Oliveira, C., Ferreira, B., Liu, C. G., Villanueva, A., Capella, G., Schwartz, S., Jr., Shiekhattar, R., & Esteller, M. (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics, 41(3), 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen, Y., Gong, J. M., Zhou, L. L., & Sheng, J. H. (2019). Correction: miR-451 as a new tumor marker for gastric cancer. Oncotarget, 10, 6396.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, Y., Li, H., Li, L. H., Tang, J. B., & Sheng, Y. L. (2019). Mir-451 inhibits proliferation and migration of non-small cell lung cancer cells via targeting LKB1/AMPK. European Review for Medical and Pharmacological Sciences, 23(Suppl 3), S274–S280.

    Google Scholar 

  14. Guo, R., Gu, J., Zhang, Z., Wang, Y., & Gu, C. (2017). miR-451 promotes cell proliferation and metastasis in pancreatic cancer through targeting CAB39. BioMed Research International, 2017, 2381482. https://doi.org/10.1155/2017/2381482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong, W., Feng, L., Yang, M., Chen, Q., Wang, H., Wang, X., & Hou, J. (2019). Prognostic value of microRNA-451 in various cancers: A meta-analysis. Pathology - Research and Practice, 215, 152726.

    Article  CAS  PubMed  Google Scholar 

  16. Khordadmehr, M., Jigari-Asl, F., Ezzati, H., Shahbazi, R., Sadreddini, S., Safaei, S., & Baradaran, B. (2019). A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. Journal of Cellular Physiology, 234, 21716–21731.

    Article  CAS  PubMed  Google Scholar 

  17. Bai, H., & Wu, S. (2019). miR-451: A novel biomarker and potential therapeutic target for cancer. OncoTargets and therapy, 12, 11069–11082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mamoori, A., Wahab, R., Vider, J., Gopalan, V., & Lam, A. K. (2019). The tumor suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer. Gene, 697, 165–174.

    Article  CAS  PubMed  Google Scholar 

  19. Mamoori, A., Gopalan, V., Lu, C. T., Chua, T. C., Morris, D. L., Smith, R. A., & Lam, A. K. (2017). Expression pattern of miR-451 and its target MIF (macrophage migration inhibitory factor) in colorectal cancer. Journal of Clinical Pathology, 70, 308–312.

    Article  CAS  PubMed  Google Scholar 

  20. Allen, B., Schneider, A., Victoria, B., Nunez Lopez, Y. O., Muller, M., Szewczyk, M., Pazdrowski, J., Majchrzak, E., Barczak, W., Golusinski, W., et al. (2018). Blood serum from head and neck squamous cell carcinoma patients induces altered microRNA and target gene expression profile in treated cells. Frontiers in Oncology, 8, 217.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu, D., Fang, C., He, W., Wu, C., Li, X., & Wu, J. (2019). MicroRNA-181a inhibits activated B-cell-like diffuse large B-cell lymphoma progression by repressing CARD11. Journal of Clinical Oncology, 2019, 9832956.

    Google Scholar 

  22. Zhu, G., Cheng, Z., Huang, Y., Zheng, W., Yang, S., Lin, C., & Ye, J. (2020). MyD88 mediates colorectal cancer cell proliferation, migration, and invasion via NF-κB/AP-1 signaling pathway. International Journal of Molecular Medicine, 45, 131–140.

    CAS  PubMed  Google Scholar 

  23. Yamadera, M., Shinto, E., Kajiwara, Y., Mochizuki, S., Okamoto, K., Shimazaki, H., Hase, K., & Ueno, H. (2019). Differential clinical impacts of tumor budding evaluated by the use of immunohistochemical and hematoxylin and eosin staining in stage II colorectal cancer. Histopathology, 74, 1005–1013.

    Article  PubMed  Google Scholar 

  24. Altuve, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T., & Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33, 2697–2706.

    Article  Google Scholar 

  25. Vidal, D. O., Ramão, A., Pinheiro, D. G., Muys, B. R., Lorenzi, J. C. C., de Pádua, A. C., Zanette, D. L., de Molfetta, G. A., Duarte, G., & Silva, W. A., Jr. (2018). Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget, 9, 23554–23563.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fan, X., & Zhao, Y. (2019). miR- 451a inhibits cancer growth, and epithelial-mesenchymal transition and induces apoptosis in papillary thyroid cancer by targeting PSMB8. Journal of Cellular and Molecular Medicine, 23, 8067–8075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61, 759–767.

    Article  CAS  PubMed  Google Scholar 

  29. Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., & Rodriguez Yoldi, M. J. (2017). Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences, 18, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  30. To, K. K., Tong, C. W., Wu, M., & Cho, W. C. (2018). MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World Journal Of Gastroenterology, 24, 2949–2973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yalcin, S., Trad, D., Kader, Y. A., Halawani, H., Demir, O. G., Mall, R., Meshcheryakov, A., Nasr, F., Nosworthy, A., Osinsky, D., et al. (2014). Personalized treatment is better than one treatment fits all in the management of patients with mCRC: A consensus statement. Future Oncology, 10, 2643–2657.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, X., Sun, X. F., Cao, Y., Ye, B., Peng, Q., Liu, X., Shen, B., & Zhang, H. (2018). CBD: A biomarker database for colorectal cancer. Database (Oxford), 2018. https://doi.org/10.1093/database/bay046/5010523

  33. Xu, P., Palmer, L. E., Lechauve, C., Zhao, G., Yao, Y., Luan, J., Vourekas, A., Tan, H., Peng, J., Schuetz, J. D., et al. (2019). Regulation of gene expression by miR-144/451 during mouse erythropoiesis. Blood, 133, 2518–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shokri, G., Kouhkan, F., Nojehdehi, S., Soleimani, M., Pourfathollah, A. A., Nikougoftar Zarif, M., Tamaddon, M., & Obeidi, N. (2019). Simultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell. Iranian Journal of Basic Medical Sciences, 224, 432–438.

    Google Scholar 

  35. Yao, H., Ma, Y., & Huang, L. J. (2020). Deletion of miR-451 curbs JAK2(V617F)-induced erythrocytosis in polycythemia vera by oxidative stress-mediated erythroblast apoptosis and hemolysis. Haematologica, 105, e153–e156.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, X., Zhang, W., Fu, J., Xu, Y., Gu, R., Qu, R., Li, L., Sun, Y., & Sun, X. (2019). MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reproductive Biology and Endocrinology, 17, 96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Z., Chang, H., Li, Y., Zhang, T., Zou, J., Zheng, X., & Wu, J. (2010). MicroRNAs: Potential regulators involved in human anencephaly. The International Journal of Biochemistry & Cell Biology, 42, 367–374.

    Article  CAS  ADS  Google Scholar 

  38. Gan, M., Zheng, T., Shen, L., Tan, Y., Fan, Y., Shuai, S., Bai, L., Li, X., Wang, J., Zhang, S., & Zhu, L. (2019). Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomedicine & Pharmacotherapy, 112, 108618.

    Article  CAS  Google Scholar 

  39. Fu, C., Chen, S., Cai, N., Liu, Z., Wang, P., & Zhao, J. (2019). Potential neuroprotective effect of miR-451 against cerebral ischemia/ reperfusion injury in stroke patients and a mouse model. World Neurosurgery, 130, e54–e61.

    Article  PubMed  Google Scholar 

  40. Ogawa, D., Ansari, K., Nowicki, M. O., Salińska, E., Bronisz, A., & Godlewski, J. (2019). MicroRNA-451 inhibits migration of glioblastoma while making it more susceptible to conventional therapy. Noncoding RNA, 5, 25.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Suzhou Science and technology planning project (SYS2020121).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Hong Chen; formal analysis, Jun Yao, Zhili Shan, Yi Jun Wei; project administration, Shijie You, Dechun Li; supervision, Yi Zhang; writing—original draft, Yi Zhang; writing—review and editing, Hong Chen. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Ethics Approval

This study was approved by the clinical ethics board of Soochow University (Soo-UCDL-2019-87).

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hong Chen and Jun Yao contributed to this work equally

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yao, J., Shan, Z. et al. To Assess the Role of microRNA-451 in the Progression and Metastasis of Colorectal Cancer. Appl Biochem Biotechnol 196, 1044–1057 (2024). https://doi.org/10.1007/s12010-023-04538-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04538-2

Keywords

Navigation