Skip to main content
Log in

Optimization and Physicochemical Characterization of Polysaccharide Purified from Sonneratia caseolaris Mangrove Leaves: a Potential Antioxidant and Antibiofilm Agent

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Box-Behnken design was applied to determine the optimal parameters of the extraction condition by using the response surface methodology (RSM) from the leaves of Sonneratia caseolaris L. The result indicates the best-optimized conditions used for the extraction of polysaccharides at 84.02 °C temperature, 3.12 h time, and 27.31 mL/g for the water-to-material ratio. The maximum experimental yield of 8.81 ± 0.09% was obtained which is in agreement with the predicted value of 8.79%. Thereafter, low molecular weight polysaccharide (SCLP) was separated after sequentially being purified through column chromatography with a relative molecular weight of 3.74 kDa. The physicochemical properties were evaluated by characterization techniques such as FT-IR spectra, NMR spectrum, and SEM analysis. RP-HPLC analysis confirmed that SCLP was a heteropolysaccharide, majorly comprising rhamnose (28.25%), and xylose (27.17%) residues, followed by mannose (18.90%), and galactose (17.17%), respectively. Thermal analysis (TGA–DSC) results showed that SCLP is a highly thermostable polymer with a degradation temperature of 361.63 °C. X-ray diffraction patterns and tertiary structure analyses indicate that SCLP had a semi-crystalline polymer having a triple-helical configuration. Moreover, SCLP displayed potential antibiofilm ability for all the tested pathogens while stronger activity against Klebsiella pneumoniae and Pseudomonas aeruginosa. In addition, SCLP has potential in vitro antioxidant activity on DPPH, ABTS radical, superoxide, and Fe2+ chelating. These findings indicate that the polysaccharide has potentially been used in functional food, cosmetics, and pharmacological industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data analyzed and generated during this study are included in the manuscript.

References

  1. Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2, 133–148.

    Article  Google Scholar 

  2. Xu, J., Lin, P., Meguro, S., & Kawachi, S. (1997). Phytochemical research on mangrove plants. I. Lipids and carbohydrates in propagules of ten mangrove species of China. Mokuzai Gakkaishi, 43, 875–881.

    CAS  Google Scholar 

  3. Sadhu, S. K., Ahmed, F., Ohtsuki, T., & Ishibashi, M. (2006). Flavonoids from Sonneratia caseolaris. Journal of Natural Medicines, 60, 264–265.

    Article  CAS  PubMed  Google Scholar 

  4. Hogg, R. W., & Gillan, F. T. (1984). Fatty acids, sterols and hydrocarbons in the leaves from eleven species of mangrove. Phytochemistry, 23, 93–97.

    Article  CAS  Google Scholar 

  5. Tian, M., Dai, H., Li, X., & Wang, B. (2009). Chemical constituents of marine medicinal mangrove plant Sonneratia caseolaris. Chinese Journal of Oceanology and Limnology, 27, 288.

    Article  CAS  Google Scholar 

  6. Nabavi, S. F., Braidy, N., Gortzi, O., Sobarzo-Sanchez, E., Daglia, M., Skalicka-Woźniak, K., & Nabavi, S. M. (2015). Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin, 119, 1–11.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad, I., Ambarwati, N. S. S., Lukman, A., Masruhim, M. A., Rijai, L., & Mun’im, A. (2018). In vitro antimicrobial activity evaluation of mangrove fruit (Sonneratia caseolaris L.) extract. Pharmacognosy Journal, 10, 598–601.

    Article  CAS  Google Scholar 

  8. Simlai, A., & Roy, A. (2013). Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview. Pharmacognosy Reviews, 7, 170.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aznan, A. S., Lee, K. L., Low, C. F., Iberahim, N. A., Ibrahim, W. N. W., Musa, N., & Musa, N. (2018). Protective effect of apple mangrove Sonneratia caseolaris extract in Edwardsiella tarda-infected African catfish, Clarias gariepinus. Fish & Shellfish Immunology, 78, 338–345.

    Article  Google Scholar 

  10. Yi, X., Jiang, S., Qin, M., Liu, K., Cao, P., Chen, S., & Gao, C. (2020). Compounds from the fruits of mangrove Sonneratia apetala: Isolation, molecular docking and antiaging effects using a Caenorhabditis elegans model. Bioorganic Chemistry, 99, 103813.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, S. B., Wen, Y., Li, X. W., Zhao, Y., Zhao, Z., & Hu, J. F. (2009). Chemical constituents from the fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae). Biochemical Systematics and Ecology, 37, 1–5.

    Article  Google Scholar 

  12. Pudhom, K., & Hansen, P. E. (2015). Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities. Bioorganic & Medicinal Chemistry Letters, 25, 2366–2371.

    Article  Google Scholar 

  13. Liu, J., Wu, Y., Wang, Y., Wu, X., Li, Y., Gao, C., & Su, Z. (2021). Hepatoprotective effect of polysaccharide isolated from Sonneratia apetala fruits on acetaminophen-induced liver injury mice. Journal of Functional Foods, 86, 104685.

    Article  CAS  Google Scholar 

  14. Li, B., Zhang, N., Xue, D., Jiao, L., Tan, Y., Wang, J., & Wu, W. (2018). Structural analysis and antioxidant activities of neutral polysaccharide isolated from. Epimedium Koreanum Nakai, 196, 246–253.

    CAS  Google Scholar 

  15. Wang, X., Zhang, Y., Liu, Z., Zhao, M., & Liu, P. (2017). Purification, characterization, and antioxidant activity of polysaccharides isolated from Cortex Periplocae. Molecules (Basel, Switzerland), 22.

  16. Cai, L., Zou, S., Liang, D., & Luan, L. (2018). Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydrate Polymers, 184, 354–365.

    Article  CAS  PubMed  Google Scholar 

  17. Chakraborty, I., Sen, I. K., Mondal, S., Rout, D., Bhanja, S. K., Maity, G. N., & Maity, P. (2019). Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. Biocatalysis and Agricultural Biotechnology, 22, 101425.

    Article  Google Scholar 

  18. Ullah, S., Khalil, A. A., Shaukat, F., & Song, Y. (2019). Sources, extraction and biomedical properties of polysaccharides. Foods, 8, 304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91–101.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, H., Feng, S., Jia, X., Li, Q., Zhou, Y., & Ding, C. (2013). Structural characterization and antioxidant activities of polysaccharides extracted from Epimedium acuminatum. Carbohydrate Polymers, 92, 63–68.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z., & Zeng, X. (2009). Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 78, 275–281.

    Article  CAS  Google Scholar 

  22. Samavati, V., & Yarmand, M. S. (2013). Statistical modeling of process parameters for the recovery of polysaccharide from Morus alba leaf. Carbohydrate Polymers, 98, 793–806.

    Article  CAS  PubMed  Google Scholar 

  23. Nie, C., Zhu, P., Wang, M., Ma, S., & Wei, Z. (2017). Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. International Journal of Biological Macromolecules, 105, 912–923.

    Article  CAS  PubMed  Google Scholar 

  24. Ren, X., He, L., Wang, Y., & Cheng, J. (2016). Optimization extraction, preliminary characterization and antioxidant activities of polysaccharides from Semen Juglandis. Molecules, 21, 1335.

    Article  PubMed  PubMed Central  Google Scholar 

  25. You, Q., Yin, X., Zhang, S., & Jiang, Z. (2014). Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. Carbohydrate Polymers, 99, 1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Sevag, M. G., Lackman, D. B., & Smolens, J. (1938). The isolation of the components of streptococcal nucleoproteins in serologically active form. Journal of Biological Chemistry, 124, 425–436.

    Article  CAS  Google Scholar 

  27. Jia, X., Ding, C., Yuan, S., Zhang, Z., Du, L., & Yuan, M. (2014). Extraction, purification and characterization of polysaccharides from Hawk tea. Carbohydrate Polymers, 99, 319–324.

    Article  CAS  PubMed  Google Scholar 

  28. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  30. Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. The Biochemical Journal, 84, 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reynolds, H. L. (1989). Association of Official Analytical Chemists: 1964–1988. Reviews of Environmental Contamination and Toxicology, 109, 109–136.

    Google Scholar 

  32. Cao, J. J., Lv, Q. Q., Zhang, B., & Chen, H. Q. (2019). Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem. Carbohydrate Polymers, 212, 89–101.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, M., Zhu, P., Zhao, S., Nie, C., Wang, N., Du, X., & Zhou, Y. (2017). Characterization, antioxidant activity and immunomodulatory activity of polysaccharides from the swollen culms of Zizania latifolia. International Journal of Biological Macromolecules, 95, 809–817.

    Article  CAS  PubMed  Google Scholar 

  34. Chai, Y., & Zhao, M. (2016). Purification, characterization and anti-proliferation activities of polysaccharides extracted from Viscum coloratum (Kom.) Nakai. Carbohydrate Polymers, 149, 121–130.

    Article  CAS  PubMed  Google Scholar 

  35. Cui, Z. W., Xu, S. Y., Sun, D. W., & Chen, W. (2006). Dehydration of concentrated Ganoderma lucidum extraction by combined microwave-vacuum and conventional vacuum drying. Drying Technology, 24, 595–599.

    Article  CAS  Google Scholar 

  36. Zhao, Y., Hu, W., Zhang, H., Ding, C., Huang, Y., Liao, J., & Yuan, M. (2019). Antioxidant and immunomodulatory activities of polysaccharides from the rhizome of Dryopteris crassirhizoma Nakai. International Journal of Biological Macromolecules, 130, 238–244.

    Article  CAS  PubMed  Google Scholar 

  37. Hui, H., Li, X., Jin, H., Yang, X., Xin, A., Zhao, R., & Qin, B. (2019). Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton. International Journal of Biological Macromolecules, 133, 306–315.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, G., Ma, X., Liu, S., Liao, Y., & Zhao, G. (2012). Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydrate Polymers, 89, 61–66.

    Article  CAS  PubMed  Google Scholar 

  39. Lakra, A. K., Domdi, L., Tilwani, Y. M., & Arul, V. (2020). Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules, 143, 797–805.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C., Zhou, Y., Sun, Z., Feng, J., & Wang, Y. (2014). Polysaccharides extraction from Erythirna variegata, chemical characterization and its antioxidant activity. International Journal of Biological Macromolecules, 68, 267–273.

    Article  CAS  PubMed  Google Scholar 

  41. Cai, L., Chen, B., Yi, F., & Zou, S. (2019). Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. International Journal of Biological Macromolecules, 140, 907–919.

    Article  CAS  PubMed  Google Scholar 

  42. Cui, Y., Liu, X., Li, S., Hao, L., Du, J., Gao, D., & Lu, J. (2018). Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. International Journal of Biological Macromolecules, 117, 256–263.

    Article  CAS  PubMed  Google Scholar 

  43. Dakia, P. A., Blecker, C., Robert, C., Wathelet, B., & Paquot, M. (2008). Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids, 22, 807–818.

    Article  CAS  Google Scholar 

  44. Cui, W., & Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Research International, 29, 397–402.

    Article  CAS  Google Scholar 

  45. Fathi, M., Emam-Djomeh, Z., & Sadeghi-Varkani, A. (2018). Extraction, characterization and rheological study of the purified polysaccharide from Lallemantia ibrica seeds. International Journal of Biological Macromolecules, 120, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  46. Nep, E. I., Carnachan, S. M., Ngwuluka, N. C., Kontogiorgos, V., Morris, G. A., Sims, I. M., & Smith, A. M. (2016). Structural characterisation and rheological properties of a polysaccharide from sesame leaves (Sesamum radiatum Schumach. & Thonn.). Carbohydrate Polymers, 152, 541–547.

    Article  CAS  PubMed  Google Scholar 

  47. Muralikrishna, G., & Subba Rao, M. (2007). Cereal non-cellulosic polysaccharides: Structure and function relationship—An overview. Critical Reviews in Food Science and Nutrition, 47, 599–610.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Q., Yu, P., Li, Z., Zhang, H., Xu, Z., & Li, P. (2003). Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. Journal of Applied Phycology, 15, 305–310.

    Article  CAS  Google Scholar 

  49. Zha, X. Q., Wang, J. H., Yang, X. F., Liang, H., Zhao, L. L., Bao, S. H., & Zhou, B. B. (2009). Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran. Carbohydrate Polymers, 78, 570–575.

    Article  CAS  Google Scholar 

  50. Zhang, Q., Yu, J., Zhang, L., Hu, M., Xu, Y., & Su, W. (2016). Extraction, characterization, and biological activity of polysaccharides from Sophora flavescens Ait. International Journal of Biological Macromolecules, 93, 459–467.

    Article  CAS  PubMed  Google Scholar 

  51. Xiao, Z., Zhang, Q., Dai, J., Wang, X., Yang, Q., Cai, C., & Ge, Q. (2020). Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves. International Journal of Biological Macromolecules, 142, 432–442.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, Z., Dong, F., Liu, X., Lv, Q., Liu, F., Chen, L., & Zhang, Y. (2016). Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydrate Polymers, 140, 461–471.

    Article  CAS  PubMed  Google Scholar 

  53. Qi, X., Mao, W., Gao, Y., Chen, Y., Chen, Y., Zhao, C., & Lin, C. (2012). Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydrate Polymers, 90, 1804–1810.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, F., Lin, L., & Xie, J. (2016). A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. International Journal of Biological Macromolecules, 92, 246–253.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y., Jiang, X., Xie, H., Li, X., & Shi, L. (2018). Structural characterization and antitumor activity of a polysaccharide from Ramulus mori. Carbohydrate Polymers, 190, 232–239.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., & Chen, W. Y. (2012). Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydrate Polymers, 89, 694–700.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, J., Zhang, X., Huo, D., Cao, C., Li, Y., Liang, Y., & Li, L. (2019). Preliminary characterization, antioxidant and α-glucosidase inhibitory activities of polysaccharides from Mallotus furetianus. Carbohydrate Polymers, 215, 307–315.

    Article  CAS  PubMed  Google Scholar 

  58. Li, N., Liu, X., He, X., Wang, S., Cao, S., Xia, Z., & Mao, W. (2017). Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydrate Polymers, 159, 195–206.

    Article  CAS  PubMed  Google Scholar 

  59. Li, B., Zhang, N., Wang, D. X., Jiao, L., Tan, Y., Wang, J., & Jiang, D. C. (2018). Structural analysis and antioxidant activities of neutral polysaccharide isolated from Epimedium koreanum Nakai. Carbohydrate Polymers, 196, 246–253.

    Article  CAS  PubMed  Google Scholar 

  60. Shen, S., Xu, Z., Feng, S., Wang, H., Liu, J., Zhou, L., & Ding, C. (2018). Structural elucidation and antiaging activity of polysaccharide from Paris polyphylla leaves. International Journal of Biological Macromolecules, 107, 1613–1619.

    Article  CAS  PubMed  Google Scholar 

  61. Shi, X. D., Nie, S. P., Yin, J. Y., Que, Z. Q., Zhang, L. J., & Huang, X. J. (2017). Polysaccharide from leaf skin of Aloe barbadensis Miller: Part I. Extraction, fractionation, physicochemical properties and structural characterization. Food Hydrocolloids, 73, 176–183.

    Article  CAS  Google Scholar 

  62. Huang, F., Liu, H., Zhang, R., Dong, L., Liu, L., Ma, Y., & Zhang, M. (2019). Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydrate Polymers, 206, 344–351.

    Article  CAS  PubMed  Google Scholar 

  63. Venkatesh, P., Balraj, M., Ayyanna, R., Ankaiah, D., & Arul, V. (2016). Physicochemical and biosorption properties of novel exopolysaccharide produced by Enterococcus faecalis. LWT-Food Science and Technology, 68, 606–614.

    Article  CAS  Google Scholar 

  64. Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A., & Reis, R. L. (2010). Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 345, 2194–2200.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, L., Zhang, B., Xiao, J., Huang, Q., Li, C., & Fu, X. (2018). Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chemistry, 249, 127–135.

    Article  CAS  PubMed  Google Scholar 

  66. Kolsi, R. B. A., Salah, H. Ben., Jardak, N., Chaaben, R., Jribi, I., El Feki, A., & Blecker, C. (2017). Sulphated polysaccharide isolated from Sargassum vulgare: Characterization and hypolipidemic effects. Carbohydrate Polymers, 170, 148–159.

    Article  PubMed  Google Scholar 

  67. Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2017). Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydrate Polymers, 157, 258–266.

    Article  CAS  PubMed  Google Scholar 

  68. Souissi, N., Boughriba, S., Abdelhedi, O., Hamdi, M., Jridi, M., Li, S., & Nasri, M. (2019). Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus. RSC Advances, 9, 11538–11551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. El-Naggar, N. E. A., Hussein, M. H., Shaaban-Dessuuki, S. A., & Dalal, S. R. (2020). Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Scientific Reports, 10, 1–19.

    Article  Google Scholar 

  70. Wang, L., Li, X., & Wang, B. (2018). Synthesis, characterization and antioxidant activity of selenium modified polysaccharides from Hohenbuehelia serotina. International Journal of Biological Macromolecules, 120, 1362–1368.

    Article  CAS  PubMed  Google Scholar 

  71. Khemakhem, I., Abdelhedi, O., Trigui, I., Ayadi, M. A., & Bouaziz, M. (2018). Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. International Journal of Biological Macromolecules, 106, 425–432.

    Article  CAS  PubMed  Google Scholar 

  72. Kolsi, R. B. A., Fakhfakh, J., Sassi, S., Elleuch, M., & Gargouri, L. (2018). Physico-chemical characterization and beneficial effects of seaweed sulfated polysaccharide against oxydatif and cellular damages caused by alloxan in diabetic rats. International Journal of Biological Macromolecules, 117, 407–417.

    Article  CAS  PubMed  Google Scholar 

  73. Xu, Z., Wang, H., Wang, B., Fu, L., Yuan, M., Liu, J., & Ding, C. (2016). Characterization and antioxidant activities of polysaccharides from the leaves of Lilium lancifolium Thunb. International Journal of Biological Macromolecules, 92, 148–155.

    Article  CAS  PubMed  Google Scholar 

  74. Chen, C., You, L.-J., Abbasi, A. M., Fu, X., Liu, R. H., & Li, C. (2016). Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food & Function, 7, 530–539.

    Article  CAS  Google Scholar 

  75. Xu, X., Yan, H., & Zhang, X. (2012). Structure and immuno-stimulating activities of a new heteropolysaccharide from Lentinula edodes. Journal of Agricultural and Food Chemistry, 60, 11560–11566.

    Article  CAS  PubMed  Google Scholar 

  76. Hu, W., Zhao, Y., Yang, Y., Zhang, H., Ding, C., Hu, C., & Chen, Y. (2019). Microwave-assisted extraction, physicochemical characterization and bioactivity of polysaccharides from Camptotheca acuminata fruits. International Journal of Biological Macromolecules, 133, 127–136.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, H., Zhao, H., Zhou, X., Yang, X., Shen, S., Wang, J., & Geng, L. (2016). Isolation and characterization of antioxidant polysaccharides (PKCP-D70–2-a and PKCP-D70–2-b) from the: Pinus koraiensis pinecone. RSC Advances, 6, 110706–110721.

    Article  CAS  Google Scholar 

  78. Zhang, Z., Zhang, Y., Liu, H., Wang, J., Wang, D., Deng, Z., & Zhong, S. (2021). A water-soluble selenium-enriched polysaccharide produced by Pleurotus ostreatus: Purification, characterization, antioxidant and antitumor activities in vitro. International Journal of Biological Macromolecules, 168, 356–370.

    Article  CAS  PubMed  Google Scholar 

  79. Romdhane, M. B., Haddar, A., Ghazala, I., Jeddou, K. B., Helbert, C. B., & Ellouz-Chaabouni, S. (2017). Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chemistry, 216, 355–364.

    Article  PubMed  Google Scholar 

  80. Zhang, Z.-P., Shen, C.-C., Gao, F.-L., Wei, H., Ren, D.-F., & Lu, J. (2017). Isolation, purification and structural characterization of two novel water-soluble polysaccharides from Anredera cordifolia. Molecules, 22, 1276.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ktari, N., Feki, A., Trabelsi, I., Triki, M., Maalej, H., Slima, S. B., & Salah, R. B. (2017). Structure, functional and antioxidant properties in Tunisian beef sausage of a novel polysaccharide from Trigonella foenum-graecum seeds. International Journal of Biological Macromolecules, 98, 169–181.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y., Li, X., Zhao, P., Qu, Z., Bai, D., Gao, X., & Gao, W. (2019). Physicochemical characterizations of polysaccharides from Angelica Sinensis Radix under different drying methods for various applications. International Journal of Biological Macromolecules, 121, 381–389.

    Article  PubMed  Google Scholar 

  83. Bouaziz, F., Koubaa, M., Helbert, C. B., Kallel, F., Driss, D., Kacem, I., & Chaabouni, S. E. (2015). Purification, structural data and biological properties of polysaccharide from Prunus amygdalus gum. International Journal of Food Science & Technology, 50, 578–584.

    Article  CAS  Google Scholar 

  84. Rjeibi, I., Feriani, A., Hentati, F., Hfaiedh, N., Michaud, P., & Pierre, G. (2019). Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. International Journal of Biological Macromolecules, 129, 422–432.

    Article  CAS  PubMed  Google Scholar 

  85. Raza, A., Li, F., Xu, X., & Tang, J. (2017). Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. International Journal of Biological Macromolecules, 94, 335–344.

    Article  CAS  PubMed  Google Scholar 

  86. Li, F., Gao, J., Xue, F., Yu, X., & Shao, T. (2016). Extraction optimization, purification and physicochemical properties of polysaccharides from Gynura medica. Molecules, 21, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Banerjee, A., Dasgupta, N., & De, B. (2005). In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chemistry, 90, 727–733.

    Article  CAS  Google Scholar 

  88. Otu, P. N. Y., Osae, R., Abdullateef, M. T., Cunshan, Z., Xiaojie, Y., & Azumah, B. K. (2020). Characterization of Moringa oleifera leaf polysaccharides extracted by coupling ionic liquid separation system with ultrasound irradiation. Journal of Food Process Engineering, 43, e13417.

    Article  CAS  Google Scholar 

  89. Chen, X., Wang, Z., & Kan, J. (2021). Polysaccharides from ginger stems and leaves: Effects of dual and triple frequency ultrasound assisted extraction on structural characteristics and biological activities. Food Bioscience, 42, 101166.

    Article  CAS  Google Scholar 

  90. Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016.

  91. Rinaudo, M. (2001). Relation between the molecular structure of some polysaccharides and original properties in sol and gel states. Food Hydrocolloids, 15, 433–440.

    Article  CAS  Google Scholar 

  92. Wang, Y., Mao, F., & Wei, X. (2012). Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohydrate Polymers, 88, 146–153.

    Article  CAS  Google Scholar 

  93. Gülçin, İ, Huyut, Z., Elmastaş, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3, 43–53.

    Article  Google Scholar 

  94. Chen, G., Bu, F., Chen, X., Li, C., Wang, S., & Kan, J. (2018). Ultrasonic extraction, structural characterization, physicochemical properties and antioxidant activities of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products. International Journal of Biological Macromolecules, 112, 656–666.

    Article  CAS  PubMed  Google Scholar 

  95. Jha, N., Sivagnanavelmurugan, M., Prasad, P., Lakra, A. K., Ayyanna, R., Domdi, L., & Arul, V. (2021). Physicochemical properties, preliminary characterization, and assessment of potential bioactivities of polysaccharide purified from the leaves of Avicennia marina. Biocatalysis and Agricultural Biotechnology, 35, 102110.

    Article  CAS  Google Scholar 

  96. Jha, N., Madasamy, S., Prasad, P., Lakra, A. K., Tilwani, Y. M., & Arul, V. (2022). Physico-chemical and functional characterization of polysaccharide purified from mangrove Rhizophora mucronata leaves having potent biological activity. South African Journal of Botany, 147, 659–669.

    Article  CAS  Google Scholar 

  97. Menchicchi, B., Hensel, A., Goycoolea, M., & F. (2015). Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection. Current Pharmaceutical Design, 21, 4888–4906.

    Article  CAS  PubMed  Google Scholar 

  98. Rendueles, O., Kaplan, J. B., & Ghigo, J. M. (2013). Antibiofilm polysaccharides. Environmental Microbiology, 15, 334–346.

    Article  CAS  PubMed  Google Scholar 

  99. Zinger-Yosovich, K. D., & Gilboa-Garber, N. (2009). Blocking of Pseudomonas aeruginosa and Ralstonia solanacearum lectins by plant and microbial branched polysaccharides used as food additives. Journal of Agricultural and Food Chemistry, 57, 6908–6913.

    Article  CAS  PubMed  Google Scholar 

  100. Kim, Y., & Hun, S. (2009). Biochemical and Biophysical Research Communications Released exopolysaccharide ( r-EPS ) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157: H7. Biochemical and Biophysical Research Communications, 379, 324–329.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Pondicherry University has acknowledged gratefully for the central instrumentation facility (CIF).

Funding

The present research work was financially supported by the UGC-SAP (Special Assistant program) and DST-FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan Arul.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 184 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, N., Madasamy, S., Prasad, P. et al. Optimization and Physicochemical Characterization of Polysaccharide Purified from Sonneratia caseolaris Mangrove Leaves: a Potential Antioxidant and Antibiofilm Agent. Appl Biochem Biotechnol 195, 7832–7858 (2023). https://doi.org/10.1007/s12010-023-04534-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04534-6

Keywords

Navigation