Skip to main content

Advertisement

Log in

DNA Repair Enzyme XRCC4 30 bp Indel Intron 3 Locus Significant Association with Predisposition of Cataract in Senility

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Impaired DNA damage repair cascade can disrupt the lens transparency due to aging-associated oxidative stress. The aim of study was to assess the association of 30 bp indel mutation (rs28360071) in XRCC4 gene with susceptibility of cataract in senility. The study followed case–control design with a total of n = 200 participants and divided equally into senile cataract patients and control groups. Conventional polymerase chain reaction (PCR) was performed for the genotyping of XRCC4 (rs28360071) mutation. In statistical measures, SPSS ® 20.0 software, MedCal©, and SNPStats© tools were used for data analysis. Distribution of homozygous D/D and mutant D allele was higher in senile cataract patients in comparison to controls. XRCC4 (rs28360071) mutation was significantly associated with predisposition senile cataract (χ2 = 13.96, adjusted OR = 2.29, 95% CI: 1.5–3.4, p < 0.001). Codominant model was suggested to be a best fit model. Mutant D/D genotype described significant association with LDL (adjusted OR = 1.67, 95% CI: 0.14–1.45, p = 0.03),and HDL (adjusted OR = 1.66, 95% CI: 0.92–2.31, p = 0.05) cholesterol with higher risk of senile cataract. XRCC4 (rs28360071) mutation may serve as a potential biomarker for the prognosis of cataract in senility. It can used to measure interruption in NHEJ repair pathway to indicate DNA damage in lens epithelial cells which could accelerate cataractogenesis with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Blood samples and history were taken after the consent of all study participants from their records at respective hospital.

References

  1. Nusinovici, S., Sabanayagam, C., Teo, B. W., Tan, G. S. W., & Wong, T. Y. (2019). Vision Impairment in CKD Patients: Epidemiology, Mechanisms, Differential Diagnoses, and Prevention. American Journal of Kidney Diseases, 73(6), 846–857. https://doi.org/10.1053/j.ajkd.2018.12.047

    Article  PubMed  Google Scholar 

  2. Shiels, A., & Hejtmancik, J. F. (2007). Genetic Origins of Cataract. Archives of Ophthalmology, 125(2), 165–173. https://doi.org/10.1001/archopht.125.2.165

    Article  CAS  PubMed  Google Scholar 

  3. Rodic, S., & Vincent, M. D. (2018). Reactive Oxygen Species (ROS) are a Key Determinant of Cancer’s Metabolic Phenotype. International Journal of Cancer, 142(3), 440–448. https://doi.org/10.1002/ijc.31069

    Article  CAS  PubMed  Google Scholar 

  4. El Assar, M., Angulo, J., & Rodríguez-Mañas, L. (2013). Oxidative Stress and Vascular Inflammation in Aging. Free Radical Biology and Medicine, 65(1), 380–401. https://doi.org/10.1016/j.freeradbiomed.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  5. Moldogazieva, N. T., Mokhosoev, I. M., Mel’nikova, T. I., Porozov, Y. B., & Terentiev, A. A. (2019). Oxidative Stress and Advanced Lipoxidation and Glycation end Products (ALEs and AGEs) in Aging and Age-related Diseases. Oxidative Medicine and Cellular Longevity, 2019, 3085756. https://doi.org/10.1155/2019/3085756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan, L. A., McGreal, R. S., & Kantorow, M. (2012). Oxidative Stress Defense and Repair Systems of the Ocular Lens. Frontiers in Bioscience-Elite, 4(1), 141–155. https://doi.org/10.2741/e365

    Article  Google Scholar 

  7. Barzilai, A., & Yamamoto, K. I. (2004). DNA Damage Responses to Oxidative Stress. DNA Repair, 3(8–9), 1109–1115. https://doi.org/10.1016/j.dnarep.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Su, S., Yao, Y., Zhu, R., Liang, C., Jiang, S., Hu, N., ... & Guan, H. (2013). The Associations Between Single Nucleotide Polymorphisms of DNA Repair Genes, DNA Damage, and Age-related Cataract: Jiangsu Eye Study. Investigative Ophthalmology & Visual Science54(2), 1201–1207. https://doi.org/10.1167/iovs.12-10940.

  9. Pannunzio, N. R., Watanabe, G., & Lieber, M. R. (2018). Nonhomologous DNA End-joining for Repair of DNA Double-strand Breaks. Journal of Biological Chemistry, 293(27), 10512–10523. https://doi.org/10.1074/jbc.TM117.000374

    Article  CAS  PubMed  Google Scholar 

  10. Seshacharyulu, P., Rachagani, S., Muniyan, S., Siddiqui, J., Cruz, E., & Sharma, S. (2019). FDPS Cooperates with PTEN Loss to Promote Prostate Cancer Progression Through Modulation of Small GTPases/AKT Axis. Oncogene, 38(1), 5265–80. https://doi.org/10.1038/s41388-019-0791-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sulkowski, P. L., Scanlon, S. E., Oeck, S., & Glazer, P. M. (2018). PTEN Regulates Nonhomologous end Joining by Epigenetic Induction of NHEJ1/XLFPTEN Regulates NHEJ. Molecular Cancer Research, 16(8), 1241–1254. https://doi.org/10.1158/1541-7786.MCR-17-0581

    Article  CAS  PubMed  Google Scholar 

  12. Chiu, C. F., Wang, C. H., Wang, C. L., Lin, C. C., Hsu, N. Y., Weng, J. R., & Bau, D. T. (2008). A Novel Single Nucleotide Polymorphism in XRCC4 Gene is Associated with Gastric Cancer Susceptibility in Taiwan. Annals of Surgical Oncology, 15(2), 514–518. https://doi.org/10.1245/s10434-007-9674-3

    Article  PubMed  Google Scholar 

  13. Chang, C. H., Chiu, C. F., Wu, H. C., Tseng, H. C., Wang, C. H., Lin, C. C., ... & Bau, D. T. (2008). Significant Association of XRCC4 Single Nucleotide Polymorphisms with Prostate Cancer Susceptibility in Taiwanese Males. Molecular Medicine Reports1(4), 525–530. https://doi.org/10.3892/mmr.1.4.525

  14. Castañeda-Zegarra, S., Fernandez-Berrocal, M., Tkachov, M., Yao, R., Upfold, N. L. E., & Oksenych, V. (2020). Genetic Interaction Between the Non-homologous End-joining Factors During B and T Lymphocyte Development: In Vivo Mouse Models. Scandinavian Journal of Immunology, 92(4), 12936. https://doi.org/10.1111/sji.12936

    Article  CAS  Google Scholar 

  15. Hung, P. J., Chen, B. R., George, R., Liberman, C., Morales, A. J., Colon-Ortiz, P., ... & Bredemeyer, A. L. (2017). Deficiency of XLF and PAXX Prevents DNA Double-strand Break Repair by Non-homologous end Joining in Lymphocytes. Cell Cycle16(3), 286–295. https://doi.org/10.1080/15384101.2016.1253640

  16. Mittal, R. D., Gangwar, R., Mandal, R. K., Srivastava, P., & Ahirwar, D. K. (2012). Gene Variants of XRCC4 and XRCC3 and their Association with Risk for Urothelial Bladder Cancer. Molecular Biology Reports, 39(2), 1667–1675. https://doi.org/10.1007/s11033-011-0906-z

    Article  CAS  PubMed  Google Scholar 

  17. Saadat, M., & Saadat, S. (2015). Susceptibility to Breast Cancer and Intron 3 Ins/Del Genetic Polymorphism of DNA Double-strand Break Repair Gene XRCC4. Journal of Medical Biochemistry, 34(4), 409. https://doi.org/10.2478/jomb-2014-0051

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fallahzadeh-Abarghooei, L., Zahedi, T., Mirabedi, F., & Saadat, M. (2015). Allelic Prevalence of Intron 3 Insertion/deletion Genetic Polymorphism of DNA Double-strand Break Repair Gene XRCC4 in Four Healthy Iranian Populations. Egyptian Journal of Medical Human Genetics, 16(3), 215–218. https://doi.org/10.1016/j.ejmhg.2015.02.004

    Article  Google Scholar 

  19. Hassan, B., Ahmed, R., Li, B., Noor, A., & Hassan, Z. U. (2019). A Comprehensive Study Capturing Vision Loss Burden in Pakistan (1990–2025): Findings from the Global Burden of Disease (GBD) 2017 study. PloS one, 14(5), e0216492. https://doi.org/10.1371/journal.pone.0216492

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kafeel, S., Fawwad, A., Basit, A., & Nawab, S. N. (2022). Clinical Association of Biochemical Variations Among Multilocus Genotypes of Antioxidant Enzymes with Susceptibility of Cataract in Hyperglycemia. Applied Biochemistry and Biotechnology, 1–19. https://doi.org/10.1007/s12010-022-03957-x

  21. Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Solé, X., Guinó, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics, 22(15), 1928–1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  PubMed  Google Scholar 

  23. Gupta, M. K., Kushwah, A. S., Singh, R., & Banerjee, M. (2020). Genotypic Analysis of XRCC4 and Susceptibility to Cervical Cancer. British Journal of Biomedical Science, 77(1), 7–12. https://doi.org/10.1080/09674845.2019.1637573

    Article  CAS  PubMed  Google Scholar 

  24. Ottonello, S., Foroni, C., Carta, A., Petrucco, S., & Maraini, G. (2000). Oxidative Stress and Age-related Cataract. Ophthalmologica, 214(1), 78–85. https://doi.org/10.1159/000027474

    Article  CAS  PubMed  Google Scholar 

  25. Ehrenberg, M., Dratviman-Storobinsky, O., Avraham-Lubin, B. R., & Goldenberg-Cohen, N. (2010). Lack of Association of the WRN C1367T Polymorphism with Senile Cataract in the Israeli Population. Molecular Vision, 16(1), 1771–1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Briollais, L., Wang, Y., Rajendram, I., Onay, V., Shi, E., Knight, J., & Ozcelik, H. (2007). Methodological Issues in Detecting Gene-gene Interactions in Breast Cancer Susceptibility: A Population-based Study in Ontario. BMC medicine, 5(1), 1–15. https://doi.org/10.1186/1741-7015-5-22

    Article  CAS  Google Scholar 

  27. Yang, M., Zhang, J., Su, S., Qin, B., Kang, L., Zhu, R., & Guan, H. (2018). Allelic Interaction Effects of DNA Damage and Repair Genes on the Predisposition to Age-related Cataract. PLoS One, 13(4), e0184478. https://doi.org/10.1371/journal.pone.0184478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Louzada-Neto, O., Lopes, B. A., Brisson, G. D., Andrade, F. G., Cezar, I. S., Santos-Rebouças, C. B., & Rossini, A. (2020). XRCC4 rs28360071 Intronic Variant is Associated with Increased Risk for Infant Acute Lymphoblastic Leukemia with KMT2A Rearrangements. Genetics and Molecular Biology, 43(1), e20200160. https://doi.org/10.1590/1678-4685-GMB-2020-0160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buratti, E., Chivers, M., Královičová, J., Romano, M., Baralle, M., Krainer, A. R., & Vořechovský, I. (2007). Aberrant 5′ Splice Sites in Human Disease Genes: Mutation Pattern, Nucleotide Structure and Comparison of Computational Tools that Predict their Utilization. Nucleic Acids Research, 35(13), 4250–4263. https://doi.org/10.1093/nar/gkm402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, G. S., & Cooper, T. A. (2007). Splicing in Disease: Disruption of the Splicing Code and the Decoding Machinery. Nature Reviews Genetics, 8(10), 749–761. https://doi.org/10.1038/nrg2164

    Article  CAS  PubMed  Google Scholar 

  31. Nicholson, P., & Mühlemann, O. (2010). Cutting the Nonsense: The Degradation of PTC-containing mRNAs. Biochemical Society Transactions, 38(6), 1615–1620. https://doi.org/10.1042/BST0381615

    Article  CAS  PubMed  Google Scholar 

  32. Santos-Rebouças, C. B., Fintelman-Rodrigues, N., Jensen, L. R., Kuss, A. W., Ribeiro, M. G., Campos, M., Jr., & Pimentel, M. M. (2011). A Novel Nonsense Mutation in KDM5C/JARID1C Gene Causing Intellectual Disability, Short Stature and Speech Delay. Neuroscience letters, 498(1), 67–71. https://doi.org/10.1016/j.neulet.2011.04.065

    Article  CAS  PubMed  Google Scholar 

  33. Li, S., Li, D., Zhang, Y., Teng, J., Shao, M., & Cao, W. (2018). Association Between Serum Lipids Concentration and Patients with Age-related Cataract in China: A Cross-Sectional, Case–control Study. BMJ open, 8(4), e021496. https://doi.org/10.1136/bmjopen-2018-021496

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ghouse, J., Ahlberg, G., Skov, A. G., Bundgaard, H., & Olesen, M. S. (2022). Association of Common and Rare Genetic Variation in the 3-hydroxy-3-methylglutaryl Coenzyme a Reductase Gene and Cataract Risk. Journal of the American Heart Association, 11(12), e025361. https://doi.org/10.1161/JAHA.122.025361

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murray, J. E., Van Der Burg, M., Jspeert, H., Carroll, P., Wu, Q., Ochi, T., & Bicknell, L. S. (2015). Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism. The American Journal of Human Genetics, 96(3), 412–424. https://doi.org/10.1016/j.ajhg.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  36. Astiazaran, M. C., Garcia-Montano, L. A., Sanchez-Moreno, F., Matiz-Moreno, H., & Zenteno, J. C. (2018). Next Generation Sequencing-based Molecular Diagnosis in Familial Congenital Cataract Expands the Mutational Spectrum in known Congenital Cataract Genes. American Journal of Medical Genetics, 176(1), 2637–2645. https://doi.org/10.1002/ajmg.a.40524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

POB Eye Hospital is acknowledged for their collaboration in sample collection.

Author information

Authors and Affiliations

Authors

Contributions

Sanober Kafeel: Conceptualization, Sample Collection, Data Curation, Statistical Analysis, and original draft writing. Neelam Bizenjo: Conceptualization, Methodology, Optimization, Experimental Work, Writing and Editing. Shams Salman Shivji: Conceptualization, Investigation, Literature Review, Experimental Work, Data Curation. Asifa Keran: Conceptualization, Optimization, Experimental work, Investigation, Writing Review. Zehra Hashim: Methodology, Formal analysis, Validation, Resources, Writing–Review and Editing. Syeda Nuzhat Nawab: Formal Analysis, Investigation, Writing–Review and Editing.

Corresponding author

Correspondence to Sanober Kafeel.

Ethics declarations

Ethics Approval

Ethical approval from Institutional Ethical Committee of University of Karachi (Ref No. ICE/080/2016) was obtained.

Consent to Participate

All the participants involved in the study have given their written informed consent.

Consent for Publication

It is certified that the “DNA repair enzyme XRCC4 30 bp Indel Intron 3 locus significant association with predisposition of cataract in senility” has neither been published in any journal nor copied from anywhere else.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafeel, S., Bizenjo, N., Shivji, S.S. et al. DNA Repair Enzyme XRCC4 30 bp Indel Intron 3 Locus Significant Association with Predisposition of Cataract in Senility. Appl Biochem Biotechnol 196, 99–112 (2024). https://doi.org/10.1007/s12010-023-04533-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04533-7

Keywords

Navigation