Skip to main content
Log in

Phytochemical Profiling, In-vitro Antioxidant and Cytotoxic Effects of Luisia tenuifolia Extracts Against Human Skin Squamous Carcinoma

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study establishes the phytochemical screening, TLC profiling, in-vitro radical scavenging, and anticancer activities in the successive extracts of whole plant of L. tenuifolia Blume. The preliminary phytochemical screening followed by quantitative estimation of bioactive secondary metabolites revealed higher abundance of phenolic (13.22 ± 0.21 mg GAE/g of extract), flavonoid (8.09 ± 0.13 mg QE/g of extract), and tannin (7.53 ± 0.08 mg GAE/g of extract) contents in ethyl acetate extract of L. tenuifolia which might be attributed to the difference in the polarity and efficacy of the solvents used in successive Soxhlet extraction. Antioxidant activity assessed by DPPH assay and ABTS assay revealed that the ethanol extract exhibited the highest radical scavenging activity with an IC50 value of 18.7 µg/mL and 33.83 µg/mL respectively. FRAP assay carried out on the extracts showed the maximum reducing power exhibited by the ethanol extract with a FRAP value of 1162.30 ± 20.73 FeSO4 E mg/g dw. MTT assay showed that the ethanol extract exhibited promising cytotoxic effect in A431 human skin squamous carcinoma cells with an IC50 value of 24.29 µg/mL. Collectively, our findings strongly suggest that the ethanol extract and its one or more active phytoconstituent can be used as a potential therapeutic to treat skin cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during the current study are included in this published article.

References

  1. D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Orthaber, K., Pristovnik, M., Skok, K., Peric, B., & Maver, U. (2017). Skin cancer and its treatment: Novel treatment approaches with emphasis on nanotechnology. Journal of Nanomaterials, 2606271, 1–20.

    Article  Google Scholar 

  3. Diepgen, T., & Mahler, V. (2002). The epidemiology of skin cancer. British Journal of Dermatology, 6(61), 1–6.

    Article  Google Scholar 

  4. Khazaei, Z., Feizhadad, G., Jarrahi, A., Adineh, H., Sohrabivafa, M., & Khazaei, Z. (2019). Global incidence and mortality of skin cancer by histological subtype and its relationship with the human development index (HDI); An ecology study in 2018. World Cancer Research Journal, 9(2), 1–13.

    Google Scholar 

  5. Vink, A., & Roza, L. (2002). Biological consequences of cyclobutane pyrimidine dimmers. Journal of Photochemistry and Photobiology B, 65(2), 101–104.

    Google Scholar 

  6. Poljsak, B., Dahmane, R., & Godic, A. (2013). Skin and antioxidants. Journal of Cosmetic and Laser Therapy, 15, 107–113.

    Article  PubMed  Google Scholar 

  7. Christenhusz, M., & Byng, J. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261, 201–217.

    Article  Google Scholar 

  8. Dressler, R. (1993). Phylogeny and classification of the orchid family. Dioscorides Press.

    Google Scholar 

  9. Joshi, G., Tewari, L. M., Lohani, N., Upreti, K., Jalal, J. S., & Tewari, G. (2009). Diversity of orchids on Uttarakhand and their conservation strategy with special reference to their medicinal importance. Report and Opinion, 1(3), 47–52.

    Google Scholar 

  10. Cribb, P. J., Lell, S. P., Dixon, K. W., & Barrett, R. L. (2003). Orchid conservation: A global perspective. In Dixon K.W, Kell S.P, Barrett R.L, Cribb P.J (Eds) Orchid conservation. Natural History Publications, Malaysia, 1–24.

  11. Dearnaley, J. D. W., Martos, F., & Selosse, M. A. (2012). Orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In B. Hock (Ed.), Fungal Associations (pp. 207–230). Springer, Berlin: The Mycota.

    Chapter  Google Scholar 

  12. Singh, S., Singh, A. K., Kumar, S., Kumar, M., Pandey, P. K., & Singh, M. C. K. (2012). Medicinal properties and uses of orchids: A concise review. Elixir Applied Botany, 52, 11627–11634.

    Google Scholar 

  13. Balachandar, M., Ravi, R. K., Nagaraj, K., & Muthukumar, T. (2019). Vegetative anatomy and mycorrhizal morphology of Schoenorchis nivea (Lindl.) Schltr., (Orchidaceae) and their adaptive significance. Acta Biologica Szegediensis, 63(1), 1–13.

    Article  Google Scholar 

  14. Mulgaonkar, M. S. (2005). Dermal anatomy of two interesting corticolous orchids from the Western Ghats. Indian Journal of Pure and Applied Physics, 20(2), 305–308.

    Google Scholar 

  15. Teoh, E. S. (2016). Medicinal orchids of Asia. Springer.

    Book  Google Scholar 

  16. Sakthi, P. S., & Kumar, P. R. (2022). Pharmacognostical standardisation of an epiphytic orchid, Luisia tenuifolia Blume. Journal of Pharmacy and Pharmacognosy Research, 10(1), 113–127.

    Article  Google Scholar 

  17. Sakthi, P. S., & Kumar, P. R. (2022). Chemical profiling of volatile bioactives in Luisia tenuifolia Blume successive extracts by GC-MS Analysis. Applied Biochemistry and Biotechnology, 194(1), 84–98.

    Article  Google Scholar 

  18. SakthiPriyadarsini, S., & Kumar, P. R. (2022). Evaluation of hydrogen peroxide scavenging and antibacterial activity of successive extracts of Luisia tenuifolia Blume against skin and wound infections. Research Journal of Pharmacy and Technology, 15(10), 4565–4569.

    Article  Google Scholar 

  19. Sakthi, P. S., Vani, P. B., Abdhul, K. A., Janani, R., & Kumar, P. R. (2020). Antitumor effect of leaves of Ravenala madagascariensis Sonn., in PANC1 and SW1990 pancreatic cell lines. Indian Journal of Natural Products and Resources, 11, 89–95.

    Google Scholar 

  20. Khandelwal, K. R. (2007). Practical pharmacognosy, techniques and experiments. Nirali Prakashan Publishers.

    Google Scholar 

  21. Sonam, M., Singh, R. P., & Saklani, P. (2017). Phytochemical screening and TLC profiling of various extracts of Reinwardtia indica. International Journal of Pharmacognosy and Phytochemistry Research, 9(4), 523–527.

    Google Scholar 

  22. Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H. Y., & Lee, C. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry, 51, 6509–6515.

    Article  CAS  PubMed  Google Scholar 

  23. Ksouri, R., Falleh, H., Megdiche, W., Trabelsi, N., Mhamdi, B., Chaieb, K., Bakrouf, A., Magne, C., & Abdelly, C. (2009). Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food and Chemical Toxicology, 47(8), 2083–2091.

    Article  CAS  PubMed  Google Scholar 

  24. Harborne, J. B. (2005). Phytochemical method. Springer, New York: A guide to modern techniques of plant analysis.

    Google Scholar 

  25. Mangal, A. K., Tewari, D., Shantha, T. R., Bansal, S., & Mangal, M. (2018). Pharmacognostical standardization and HPTLC fingerprinting analysis of Crocus sativus L. Indian Journal of Traditional Knowledge, 17(3), 592–597.

    Google Scholar 

  26. Shalaby, E. A., & Shanab, S. M. M. (2013). Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian Journal of Marine Sciences, 42(5), 556–564.

    Google Scholar 

  27. Abu, F., Mat. T. C. N., Mohd, M. M. A., & Mohd, A. S. (2017). Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. Evidence-Based Complementary and Alternative Medicine, 2907219.

  28. Wang, J. J., Shi, Q. H., Zhang, W., & Sanderson, B. J. (2012). Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.,). Food and Chemical Toxicology, 50(9), 3004–3013.

    Article  CAS  PubMed  Google Scholar 

  29. Saleem, U., Ahmad, B., Ahmad, M., Hussain, K., Bukhari, N. I., & Anjum, A. A. (2014). Determination of cytotoxicity of latex and methanol extract of Euphorbia helioscopia leaves on Vero cell line with MTT assay. Pakistan Journal of Zoology, 46(3), 741–745.

    Google Scholar 

  30. Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & AEl-Shemy, H. (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanol and water leaves extracts of Annona muricata (Graviola). Asian Pacific Journal of Tropical Medicine, 7(S1), S355–S363.

    Article  CAS  Google Scholar 

  31. Akter, M., Huda, M. K., & Hoque, M. M. (2018). Investigation of secondary metabolites of nine medicinally important orchids of Bangladesh. Journal of Pharmacognosy and Phytochemistry, 7(5), 602–606.

    CAS  Google Scholar 

  32. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933–956.

    Article  CAS  PubMed  Google Scholar 

  33. Korkina, L. G., & Afanas’ev, I. B. (1997). Antioxidant and chelating properties of flavonoids. Advances in Pharmacology, 38, 151–163.

    Article  CAS  PubMed  Google Scholar 

  34. Brown, J. E., Khodr, H., Hider, R. C., & Rice-Evans, C. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochemical Journal, 330, 1173–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  36. Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L., & Opletal, L. (2008). Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Reviews in Medicinal Chemistry, 8(5), 436–447.

    Article  CAS  PubMed  Google Scholar 

  37. Thurnham, D. (2002). Antioxidants in food: Practical applications. British Journal of Nutrition, 87(4), 391.

    Article  Google Scholar 

  38. Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523–1542.

    Article  CAS  PubMed  Google Scholar 

  39. Alothman, M., Rajeev, A., & Karim, A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115(3), 785–788.

    Article  CAS  Google Scholar 

  40. Medini, F., Fellah, H., Ksouri, R., & Abdelly, C. (2014). Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science, 8(3), 216–224.

    Article  Google Scholar 

  41. Jamuna, S., & Paulsamy, S. (2016). HPTLC fingerprints of various secondary metabolites in the traditional medicinal herb Hypochaeris radicata L. Journal of Botany, 5429625.

  42. Itankar, P. R., Sawant, D. B., Tauqeer, M., & Charde, S. S. (2015). High performance thin layer chromatography fingerprinting, phytochemical and physico-chemical studies of anti-diabetic herbal extracts. Ayu, 36(2), 188–195.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cheeseman, K., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493.

    Article  CAS  PubMed  Google Scholar 

  44. Kandil, A. S., Abou-Elella, F., & El Shemy, H. A. (2019). Cytotoxic profile activities of ethanol and methanol extracts of chicory plant (Cichorium intybus L.). Journal of Radiation Research and Applied Sciences, 12(1), 106–111.

    Article  Google Scholar 

  45. Wagener, F. A., Carels, C. E., & Lundvig, D. M. (2013). Targeting the redox balance in inflammatory skin conditions. International Journal of Molecular Sciences, 14(5), 9126–9167.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jun, M., Fu, H. Y., Hong, J., Wan, X., Yang, C. S., & Ho, C. T. (2003). Comparison of antioxidant activities of isoflavones from kudzu root. Journal of Food Science, 68(6), 2117–2122.

    Article  CAS  Google Scholar 

  48. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28, 25–30.

    CAS  Google Scholar 

  49. Rahul, V., Agrawal, P., Sharma, M., & Shukla, S. (2016). Total phenolics, flavonoids and antioxidant potential of organic extract of fresh water algal sample collected from a marine lake. Indian Journal of Geo-Marine Sciences, 45, 1320–1326.

    Google Scholar 

  50. Sarkar, B., Kumar, D., Sasmal, D., & Mukhopadhyay, K. (2014). Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: A comparative study. Natural Products Research, 28(17), 1393–1398.

    Article  CAS  Google Scholar 

  51. Supriatno, L. (2018). Effect of sequential extraction on total phenolic content (TPC) and antioxidant activities (AA) of Luffa acutangula Linnaeus dried pulps. In: AIP Conference Proceedings 2002, 020062.

  52. Zwald, F., & Lambert, D. (2009). Chemoprevention of skin cancer. In D. F. MacFarlane (Ed.), Skin cancer management (pp. 279–290). Springer.

    Chapter  Google Scholar 

  53. Schwartz, R., Bridges, T., Butani, A., & Ehrlich, A. (2008). Actinic keratosis: An occupational and environmental disorder. Journal of the European Academy of Dermatology and Venereology, 22(5), 606–615.

    Article  CAS  PubMed  Google Scholar 

  54. Goette, D. K. (1981). Topical chemotherapy with 5-fluorouracil: A review. Journal of the American Academy of Dermatology, 4(6), 633–649.

    Article  CAS  PubMed  Google Scholar 

  55. Nirmala, J. G., Celsia, S. E., Swaminathan, A., Narendhirakannan, R. T., & Chatterjee, S. (2018). Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology, 70(2), 537–554.

    Article  Google Scholar 

  56. Dun, J., Chen, X., Gao, H., Zhang, Y., Zhang, H., & Zhang, Y. (2015). Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis. Experimental Biology and Medicine, 240, 1672–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Prasad, R., & Koch, B. (2014). Antitumor activity of ethanol extract of Dendrobium formosum in T-cell lymphoma: An in vitro and in vivo study. Biomed Research International, 753451.

  58. Wang, J. J., Shi, Q. H., Zhang, W., & Sanderson, B. J. (2012). Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food and Chemical Toxicology, 50(9), 3004–3013.

    Article  CAS  PubMed  Google Scholar 

  59. Sohag, S. I., Hoque, M. M., & Huda, M. K. (2017). Phytochemical screening and antioxidant activity of rare medicinal orchid Luisia zeylanica Lindl. Journal of Pharmacognosy and Phytochemistry, 6(4), 688–692.

    CAS  Google Scholar 

  60. Katta, J., Rampilla, V., & Mohamad, K. (2020). Evaluation of phytochemical and pharmacological aspects of epiphytic orchid, Luisia zeylanica LINDL. Jhansi. International Journal of Pharmaceutical Sciences and Research, 11(3), 1333–1349.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Sakthi Priyadarsini Sethuraman and Kumar Pathangi Ramachandran. The first draft of the manuscript was written by Sakthi Priyadarsini Sethuraman and Kumar Pathangi Ramachandran commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sakthi Priyadarsini Sethuraman.

Ethics declarations

Ethical Approval

This is an observational study. The SRM College of Pharmacy Institutional Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethuraman, S.P., Ramachandran, K.P. Phytochemical Profiling, In-vitro Antioxidant and Cytotoxic Effects of Luisia tenuifolia Extracts Against Human Skin Squamous Carcinoma. Appl Biochem Biotechnol 196, 400–416 (2024). https://doi.org/10.1007/s12010-023-04521-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04521-x

Keywords

Navigation