Skip to main content
Log in

Marantodes pumilum (Kacip Fatimah) Aqueous Extract Enhances Osteoblast and Suppresses Osteoclast Activities in Cancellous Bone of a Rat Model of Postmenopause

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Evidence pointed towards the benefits of Marantodes pumilum in treating osteoporosis after menopause; however, the detailed mechanisms still have not been explored. Therefore, this study aims to identify the molecular mechanisms underlying M. pumilum’s bone-protective effect via the involvement of RANK/RANKL/OPG and Wnt/β-catenin signaling pathways. Ovariectomized adult female rats were given M. pumilum leaf aqueous extract (MPLA) (50 and 100 mg/kg/day) and estrogen (positive control) orally for twenty-eight consecutive days. Following the treatment, rats were sacrificed, and femur bones were harvested. Blood was withdrawn for analysis of serum Ca2+, PO43−, and bone alkaline phosphatase (BALP) levels. The bone microarchitectural changes were observed by H&E and PAS staining and distribution and expression of RANK/RANKL/OPG and Wnt3a/β-catenin and its downstream proteins were determined by immunohistochemistry, immunofluorescence, Western blot, and real-time PCR. MPLA treatment increased serum Ca2+ and PO43− levels and reduced serum BALP levels (p < 0.05). Besides, deterioration in cancellous bone microarchitecture and the loss of bone glycogen and collagen content were mitigated by MPLA treatment. Levels of RANKL, Traf6, and NF-kB but not RANK in bone were decreased; however, levels of OPG, Wnt3a, LRP-5, Frizzled, Dvl, β-catenin, RUNX, and Bmp-2 in bone were increased following treatment with MPLA. In conclusion, MPLA helps to protect against bone deterioration in estrogen deficiency state and thus, this herb could potentially be used to ameliorate osteoporosis in women after menopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are available within the manuscript.

References

  1. Abu-Amer, Y. (2013). NF-κB signaling and bone resorption. Osteoporosis International, 24, 2377–2386.

    Article  CAS  PubMed  Google Scholar 

  2. Aglan, H. A., Ahmed, H. H., Mahmoud, N. S., Aly, R. M., Ali, N. A., & Abd-Rabou, A. A. (2020). Nanotechnological applications hold a pivotal position in boosting stem cells osteogenic activity: In vitro and in vivo studies. Applied Biochemistry and Biotechnology, 190, 551–573.

    Article  CAS  PubMed  Google Scholar 

  3. Ahsani, Z., Mohammadi-Yeganeh, S., Kia, V., Karimkhanloo, H., Zarghami, N., & Paryan, M. (2017). WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Applied Biochemistry and Biotechnology, 181, 884–897.

    Article  CAS  PubMed  Google Scholar 

  4. Antika, L. D., Lee, E. J., Kim, Y. H., Kang, M. K., Park, S. H., Kim, D. Y., Oh, H., Choi, Y. J., & Kang, Y. H. (2017). Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. Journal of Nutritional Biochemistry, 49, 42–52.

    Article  CAS  PubMed  Google Scholar 

  5. Armas, L. A., & Recker, R. R. (2012). Pathophysiology of osteoporosis: New mechanistic insights. Endocrinology and Metabolism Clinics of North America, 41, 475–486.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong, V. J., Muzylak, M., Sunters, A., Zaman, G., Saxon, L. K., Price, J. S., & Lanyon, L. E. (2007). Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. Journal of Biological Chemistry, 282, 20715–20727.

    Article  CAS  PubMed  Google Scholar 

  7. Bord, S., Ireland, D. C., Beavan, S. R., & Compston, J. E. (2003). The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 32, 136–141.

    Article  CAS  PubMed  Google Scholar 

  8. Boyce, B. F., & Xing, L. (2007). The RANKL/RANK/OPG pathway. Current Osteoporosis Reports, 5, 98–104.

    Article  PubMed  Google Scholar 

  9. Bu, S., Chen, Y., Wang, S., Zhang, F., & Ji, G. (2012). Treadmill training regulates β-catenin signaling through phosphorylation of GSK-3β in lumbar vertebrae of ovariectomized rats. European Journal of Applied Physiology, 112, 3295–3304.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, J., Wang, Z., Tang, E., Fan, Z., McCauley, L., Franceschi, R., Guan, K., Krebsbach, P. H., & Wang, C.-Y. (2009). Inhibition of osteoblast functions by IKK/NF-κB in osteoporosis. Nature Medicine, 15, 682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y. X., Zhu, D. Y., Gao, J., Xu, Z. L., Tao, S. C., Yin, W. J., Zhang, Y. L., Gao, Y. S., & Zhang, C. Q. (2019). Diminished membrane recruitment of Akt is instrumental in alcohol-associated osteopenia via the PTEN/Akt/GSK-3β/β-catenin axis. The FEBS Journal, 286, 1101–1119.

    Article  CAS  PubMed  Google Scholar 

  12. Clynes, M. A., Harvey, N. C., Curtis, E. M., Fuggle, N. R., Dennison, E. M., & Cooper, C. (2020). The epidemiology of osteoporosis. British Medical Bulletin, 133, 105.

    PubMed  Google Scholar 

  13. Curtis, E. M., van der Velde, R., Moon, R. J., van den Bergh, J. P., Geusens, P., de Vries, F., van Staa, T. P., Cooper, C., & Harvey, N. C. (2016). Epidemiology of fractures in the United Kingdom 1988–2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone, 87, 19–26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Effendy, N. M., Abdullah, S., Yunoh, M. F. M., & Shuid, A. N. (2015). Time and dose-dependent effects of Labisia pumila on the bone strength of postmenopausal osteoporosis rat model. BMC Complementary and Alternative Medicine, 15, 1–11.

    CAS  Google Scholar 

  15. Effendy, N. M., Khamis, M. F., & Shuid, A. N. (2017). The effects of Labisia pumila extracts on bone microarchitecture of ovariectomized-induced osteoporosis rats: A micro-CT analysis. Journal of X-ray Science and Technology, 25, 101–112.

    Article  PubMed  Google Scholar 

  16. Fathilah, S. N., Abdullah, S., Mohamed, N., & Shuid, A. N. (2012). Labisia pumila prevents complications of osteoporosis by increasing bone strength in a rat model of postmenopausal osteoporosis. Evidence-Based Complementary and Alternative Medicine, 2012, 948080.

  17. Fathilah, S. N., Mohamed, N., Muhammad, N., Mohamed, I. N., Soelaiman, I. N., & Shuid, A. N. (2013). Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model. BMC Complementary and Alternative Medicine, 13, 217.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fathilah, S. N., Mohamed, N., Muhammad, N., Mohamed, I. N., Soelaiman, I. N., & Shuid, A. N. (2013). Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model. BMC Complementary and Alternative Medicine, 13, 1–7.

    Article  Google Scholar 

  19. Ferreiro, D. U., & Komives, E. A. (2010). Molecular mechanisms of system control of NF-κB signaling by IκBα. Biochemistry, 49, 1560–1567.

    Article  CAS  PubMed  Google Scholar 

  20. Foo, C., Frey, S., Yang, H. H., Zellweger, R., & Filgueira, L. (2007). Downregulation of beta-catenin and transdifferentiation of human osteoblasts to adipocytes under estrogen deficiency. Gynecological Endocrinology, 23, 535–540.

    Article  CAS  PubMed  Google Scholar 

  21. Fuggle, N. R., Curtis, E. M., Ward, K. A., Harvey, N. C., Dennison, E. M., & Cooper, C. (2019). Fracture prediction, imaging and screening in osteoporosis. Nature Reviews. Endocrinology, 15, 535–547.

    Article  PubMed  Google Scholar 

  22. Galal, N., El-Beialy, W. R., Deyama, Y., Yoshimura, Y., Suzuki, K., & Totsuka, Y. (2007). Novel effect of estrogen on RANK and c-fms expression in RAW 264.7 cells. International Journal of Molecular Medicine, 20, 97–101.

    CAS  PubMed  Google Scholar 

  23. Giribabu, N., Karim, K., Kilari, E. K., Nelli, S. R., & Salleh, N. (2020). Oral administration of Centella asiatica (L.) Urb leave aqueous extract ameliorates cerebral oxidative stress, inflammation, and apoptosis in male rats with type-2 diabetes. Inflammopharmacology, 28, 1599–1622.

    Article  CAS  PubMed  Google Scholar 

  24. Giribabu, N., Karim, K., Kilari, E. K., & Salleh, N. (2017). Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. Journal of Ethnopharmacology, 205, 123–137.

    Article  PubMed  Google Scholar 

  25. Guo, D., He, H., Zhao, M., Zhang, G., & Hou, T. (2020). Desalted duck egg white peptides promoted osteogenesis via wnt/β-catenin signal pathway. Journal of Food Science, 85, 834–842.

    Article  CAS  PubMed  Google Scholar 

  26. Hofbauer, L. C., Kühne, C. A., & Viereck, V. (2004). The OPG/RANKL/RANK system in metabolic bone diseases. Journal of Musculoskeletal and Neuronal Interactions, 4, 268–275.

    CAS  PubMed  Google Scholar 

  27. Ikeda, T., Utsuyama, M., & Hirokawa, K. (2001). Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. Journal of Bone and Mineral Research, 16, 1416–1425.

    Article  CAS  PubMed  Google Scholar 

  28. Ikehata, M., Yamada, A., Morimura, N., Itose, M., Suzawa, T., Shirota, T., Chikazu, D., & Kamijo, R. (2017). Wnt/β-catenin signaling activates nephronectin expression in osteoblasts. Biochemical and Biophysical Research Communications, 484, 231–234.

    Article  CAS  PubMed  Google Scholar 

  29. Kalaitzidis, D., & Gilmore, T. D. (2005). Transcription factor cross-talk: The estrogen receptor and NF-κB. Trends in Endocrinology & Metabolism, 16, 46–52.

    Article  CAS  Google Scholar 

  30. Karlamangla, A. S., Burnett-Bowie, S.-A.M., & Crandall, C. J. (2018). Bone health during the menopause transition and beyond. Obstetrics and Gynecology Clinics, 45, 695–708.

    PubMed  Google Scholar 

  31. Khalil, A. S. M., Giribabu, N., Yelumalai, S., Shahzad, H., Kilari, E. K., & Salleh, N. (2021). Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life Sciences, 278, 119605.

  32. Kim, R. Y., Yang, H. J., Song, Y. M., Kim, I. S., & Hwang, S. J. (2015). Estrogen modulates bone morphogenetic protein-induced sclerostin expression through the Wnt signaling pathway. Tissue Engineering Part A, 21, 2076–2088.

    Article  CAS  PubMed  Google Scholar 

  33. Kombiyil, S., & Sivasithamparam, N. D. (2022). In vitro anti-cancer effect of Crataegus oxyacantha berry extract on hormone receptor positive and triple negative breast cancers via regulation of canonical Wnt signaling pathway. Applied Biochemistry and Biotechnology, 195, 2687–2708.

  34. Lamas, A. Z., Caliman, I. F., Dalpiaz, P. L. M., de Melo Jr, A. F., Abreu, G. R., Lemos, E. M., Gouvea, S. A., & Bissoli, N. S. (2015). Comparative effects of estrogen, raloxifene and tamoxifen on endothelial dysfunction, inflammatory markers and oxidative stress in ovariectomized rats. Life Sciences, 124, 101–109.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z., Xu, Z., Duan, C., Liu, W., Sun, J., & Han, B. (2018). Role of TCF/LEF transcription factors in bone development and osteogenesis. International Journal of Medical Sciences, 15, 1415–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao, H.-J., Tsai, H.-F., Wu, C.-S., Chyuan, I.-T., & Hsu, P.-N. (2019). TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment. Cell Death & Disease, 10, 1–11.

    Article  Google Scholar 

  37. Liedert, A., Nemitz, C., Haffner-Luntzer, M., Schick, F., Jakob, F., & Ignatius, A. (2020). Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss. International Journal of Molecular Sciences, 21, 8301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, X., Liu, J., Yang, L., Zhang, B., Dong, Y., & Zhao, Q. (2018). Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sciences, 209, 140–148.

    Article  CAS  PubMed  Google Scholar 

  39. Marchev, A. S., Dimitrova, P. A., Burns, A. J., Kostov, R., Dinkova-Kostova, A., & Georgiev, M. I. (2017). Oxidative stress and chronic inflammation in osteoarthritis: Can NRF2 counteract these partners in crime? Annals of the New York Academy of Sciences, 1401, 114–135.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Ozer, F. F., Dagdelen, S., & Erbas, T. (2018). Relation of RANKL and OPG levels with bone resorption in patients with acromegaly and prolactinoma. Hormone and Metabolic Research, 50, 562–567.

    Article  CAS  PubMed  Google Scholar 

  41. Park, J. H., Lee, N. K., & Lee, S. Y. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Molecules and Cells, 40, 706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pierroz, D. D., Bonnet, N., Baldock, P. A., Ominsky, M. S., Stolina, M., Kostenuik, P. J., & Ferrari, S. L. (2010). Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. Journal of Biological Chemistry, 285, 28164–28173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruocco, M., & Karin, M. (2005). IKKβ as a target for treatment of inflammation induced bone loss. Annals of the Rheumatic Diseases, 64, iv81–iv85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salama, R. H. M., Ali, S. S., Salama, T. H. M., Almged, M. A., Alsanory, T. A., Alsanory, A. A., Aboutaleb, H., & Ezzat, G. M. (2022). Dietary effects of nanopowder eggshells on mineral contents, bone turnover biomarkers, and regulators of bone resorption in healthy rats and ovariectomy-induced osteoporosis rat model. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-04038-9

  45. Shahrim, Z., Baharuddin, P., Yahya, N. A., Muhammad, H., Bakar, R. A., & Ismail, Z. (2006). The in vivo rodent micronucleus assay of Kacip Fatimah (Labisia pumila) extract. Tropical Biomedicine, 23, 214–219.

    Google Scholar 

  46. Shekar, S. (2009) Health and beauty from the rainforest: Malaysian traditions of ramuan. ed. Biotropics Ramuan.

  47. Sözen, T., Özışık, L., & Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4, 46–56.

    Article  PubMed  Google Scholar 

  48. Streicher, C., Heyny, A., Andrukhova, O., Haigl, B., Slavic, S., Schüler, C., Kollmann, K., Kantner, I., Sexl, V., Kleiter, M., Hofbauer, L. C., Kostenuik, P. J., & Erben, R. G. (2017). Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Science and Reports, 7, 6460.

    Article  ADS  Google Scholar 

  49. Tabatabaei-Malazy, O., Salari, P., Khashayar, P., & Larijani, B. (2017). New horizons in treatment of osteoporosis. DARU Journal of Pharmaceutical Sciences, 25, 1–16.

    Article  Google Scholar 

  50. Teh, B. P., Ahmad, N., IbnuRasid, E. N., Zolkifli, N. A., Mohamed Yusoff, N., Zulkapli, A., Japri, N., Lee, J. C., & Muhammad, H. (2021). Herbal-based formulation containing Eurycoma longifolia and Labisia pumila aqueous extracts: Safe for consumption? Pharmaceuticals, 14, 142.

  51. Teh, B. P., Ahmad, N., Ibnu Rasid, E. N., Zolkifli, N. A., Sastu Zakaria, U. R., Mohamed Yusoff, N., Zulkapli, A., Japri, N., Lee, J. C., & Muhammad, H. (2021). Herbal-based formulation containing Eurycoma longifolia and Labisia pumila aqueous extracts: Safe for consumption?. Pharmaceuticals (Basel, Switzerland), 14, 142.

  52. Tobeiha, M., Moghadasian, M. H., Amin, N., & Jafarnejad, S. (2020). RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. BioMed Research International, 2020, 6910312.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vitale, R. F., & Ribeiro, F. D. A. Q. (2007). The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Revista Brasileira de Otorrinolaringologia, 73, 123–127.

    Article  Google Scholar 

  54. Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I. R., Schwarz, E. M., Takeshita, S., Wagner, E. F., Noda, M., & Matsuo, K. (2007). NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. Journal of Biological Chemistry, 282, 18245–18253.

    Article  CAS  PubMed  Google Scholar 

  55. Yan, D. Y., Tang, J., Chen, L., Wang, B., Weng, S., Xie, Z., Wu, Z. Y., Shen, Z., Bai, B., & Yang, L. (2020). Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. Journal of Cellular and Molecular Medicine, 24, 2330–2341.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y., Hao, P., Li, H., & Miao, B. (2022). Ponicidin treatment improved the cell proliferation, differentiation, and calcium mineralization on the osteoblast-like MG-63 cells. Applied Biochemistry and Biotechnology, 194, 3860–3870.

    Article  CAS  PubMed  Google Scholar 

  57. Zhu, Y., Wu, Y., Cheng, J., Wang, Q., Li, Z., Wang, Y., Wang, D., Wang, H., Zhang, W., & Ye, J. (2018). Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem cell Research & Therapy, 9, 1–16.

    Article  Google Scholar 

Download references

Funding

This study was funded by Bantuan Kecil Penyelidikan (BKP) grant (BK037-2017) IPPP, University of Malaya, Kuala Lumpur, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

K. K.: data curation; investigation—original draft. N. G.: conceptualization, investigation, data curation, formal analysis, methodology, funding acquisition, project administration, supervision. N. S.: conceptualization; methodology; writing—final review and editing.

Corresponding authors

Correspondence to Nelli Giribabu or Naguib Bin Salleh.

Ethics declarations

Ethical Approval

This study involves animals and ethics has been approved by the Faculty of Medicine Animal Care and Use Committee (FOM IACUC), University Malaya, with ethics number 2017–180509/PHYSIO/R/KK.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin Karim, K., Giribabu, N. & Bin Salleh, N. Marantodes pumilum (Kacip Fatimah) Aqueous Extract Enhances Osteoblast and Suppresses Osteoclast Activities in Cancellous Bone of a Rat Model of Postmenopause. Appl Biochem Biotechnol 196, 821–840 (2024). https://doi.org/10.1007/s12010-023-04515-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04515-9

Keywords

Navigation