Skip to main content

Advertisement

Log in

Hypermethylated ITGA8 Facilitate Bladder Cancer Cell Proliferation and Metastasis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, Y., Zheng, F., Xiao, X., Xie, F., Tao, D., Huang, C., Liu, D., Wang, M., Wang, L., Zeng, F., & Jiang, G. (2017). CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Reports, 18, 1646–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonasio, R., Tu, S., & Reinberg, D. (2010). Molecular signals of epigenetic states, 330, 612–616.

  3. Riddihough, G., & Zahn, L. M. (2010). Epigenetics. What is epigenetics? Introduction, 330, 611.

  4. Kulis, M., & Esteller, M. (2010). DNA methylation and cancer. Advances in Genetics, 70, 27–56.

    Article  PubMed  Google Scholar 

  5. Carmona, F. J., Azuara, D., Berenguer-Llergo, A., Fernandez, A. F., Biondo, S., de Oca, J., Rodriguez-Moranta, F., Salazar, R., Villanueva, A., Fraga, M. F., Guardiola, J., Capella, G., Esteller, M., & Moreno, V. (2013). DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prevention Research (PhiladelphiaPa.), 6, 656–665.

    Article  CAS  Google Scholar 

  6. Schulz, W. A., & Goering, W. (2016). DNA methylation in urothelial carcinoma. Epigenomics, 8, 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  7. Lund, R. J., Huhtinen, K., Salmi, J., Rantala, J., Nguyen, E. V., Moulder, R., Goodlett, D. R., Lahesmaa, R., & Carpen, O. (2017). DNA methylation and transcriptome changes associated with cisplatin resistance in ovarian cancer. Scientific Reports, 7, 1469.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, X., Wan, F., Zhang, H., Shi, G., & Ye, D. (2016). ITGA2B and ITGA8 are predictive of prognosis in clear cell renal cell carcinoma patients. Tumor Biology, 37, 253–262.

    Article  CAS  PubMed  Google Scholar 

  10. Ryu, J., Koh, Y., Park, H., Kim, D. Y., Kim, D. C., Byun, J. M., Lee, H. J., & Yoon, S. S. (2016). Highly expressed integrin-alpha8 induces epithelial to mesenchymal transition-like features in multiple myeloma with early relapse. Molecules and Cells, 39, 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, J., Cheng, J., Zhang, F., Luo, X., Zhang, Z., & Chen, S. (2020). Estrogen receptor alpha is involved in the regulation of ITGA8 methylation in estrogen receptor-positive breast cancer. Annals of Translational Medicine, 8(16), 993.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cairns, P. (2009). 5’-azacytidine expression arrays. DNA Methylation: Methods and Protocols, 507, 165–174.

    Article  CAS  Google Scholar 

  13. Zhang, H., Qi, F., Cao, Y., Zu, X., Chen, M., Li, Z., & Qi, L. (2013). 5-Aza-2’-deoxycytidine enhances maspin expression and inhibits proliferation, migration, and invasion of the bladder cancer T24 cell line. Cancer Biotherapy and Radiopharmaceuticals, 28, 343–350.

    Article  CAS  PubMed  Google Scholar 

  14. Okochi-Takada, E., Hattori, N., Ito, A., Niwa, T., Wakabayashi, M., Kimura, K., Yoshida, M., & Ushijima, T. (2018). Establishment of a high-throughput detection system for DNA demethylating agents. Epigenetics, 13, 147–155.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oshima, G., Poli, E. C., Bolt, M. J., Chlenski, A., Forde, M., Jutzy, J. M. S., Biyani, N., Posner, M. C., Pitroda, S. P., Weichselbaum, R. R., & Khodarev, N. N. (2019). DNA methylation controls metastasis-suppressive 14q32-encoded miRNAs. Cancer Research, 79, 650–662.

    Article  CAS  PubMed  Google Scholar 

  16. Venturelli, S., Berger, A., Weiland, T., Essmann, F., Waibel, M., Nuebling, T., Häcker, S., Schenk, M., Schulze-Osthoff, K., Salih, H. R., Fulda, S., Sipos, B., Johnstone, R. W., Lauer, U. M., & Bitzer, M. (2013). Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2’-deoxycytidine in solid tumor cells. Molecular Cancer Therapeutics, 12, 2226–2236.

    Article  CAS  PubMed  Google Scholar 

  17. Greville, G., Llop, E., Howard, J., Madden, S. F., Perry, A. S., Peracaula, R., Rudd, P. M., McCann, A., & Saldova, R. (2021). 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clinical Epigenetics, 13, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jou, Y. C., Wang, S. C., Dia, Y. C., Wang, S. T., Yu, M. H., Yang, H. Y., Chen, L. C., Shen, C. H., & Liu, Y. W. (2021). Anti-cancer effects and tumor marker role of glutathione S-transferase Mu 5 in human bladder cancer. International Journal of Molecular Sciences, 22(6), 3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Irizarry, R. A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S. A., Jeddeloh, J. A., Wen, B., & Feinberg, A. P. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research, 18, 780–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A. R., Gutig, D., Grabs, G., Howe, A., Kursar, M., Lesche, R., Leu, E., Lewin, A., Maier, S., Muller, V., Otto, T., Scholz, C., et al. (2002). Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Research, 30, e21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Berdasco, M., & Esteller, M. (2010). Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Developmental Cell, 19, 698–711.

    Article  CAS  PubMed  Google Scholar 

  22. Gokul, G., & Khosla, S. (2013). DNA methylation and cancer. Sub-cellular Biochemistry, 61, 597–625.

    Article  CAS  PubMed  Google Scholar 

  23. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukherjee, N., Kumar, A. P., & Ghosh, R. (2015). DNA methylation and flavonoids in genitourinary cancers. Current Pharmacology Reports, 1, 112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagaraju, G. P., & El-Rayes, B. F. (2013). SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Letters, 328, 10–17.

    Article  CAS  PubMed  Google Scholar 

  26. Patchsung, M., Boonla, C., Amnattrakul, P., Dissayabutra, T., Mutirangura, A., & Tosukhowong, P. (2012). Long interspersed nuclear element-1 hypomethylation and oxidative stress: Correlation and bladder cancer diagnostic potential. PloS One, 7, e37009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juergens, R. A., Wrangle, J., Vendetti, F. P., Murphy, S. C., Zhao, M., Coleman, B., Sebree, R., Rodgers, K., Hooker, C. M., Franco, N., Lee, B., Tsai, S., Delgado, I. E., Rudek, M. A., Belinsky, S. A., Herman, J. G., Baylin, S. B., Brock, M. V., & Rudin, C. M. (2011). Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discovery, 1, 598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai, H. C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F. V., Shin, J. J., Harbom, K. M., Beaty, R., Pappou, E., Harris, J., Yen, R. W., Ahuja, N., Brock, M. V., Stearns, V., Feller-Kopman, D., Yarmus, L. B., Lin, Y. C., Welm, A. L., et al. (2012). Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21, 430–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fili, C., Malagola, M., Follo, M. Y., Finelli, C., Iacobucci, I., Martinelli, G., Cattina, F., Clissa, C., Candoni, A., Fanin, R., Gobbi, M., Bocchia, M., Defina, M., Spedini, P., Skert, C., Manzoli, L., Cocco, L., & Russo, D. (2013). Prospective phase II Study on 5-days azacitidine for treatment of symptomatic and/or erythropoietin unresponsive patients with low/INT-1-risk myelodysplastic syndromes. Clinical Cancer Research, 19, 3297–3308.

    Article  CAS  PubMed  Google Scholar 

  30. Gore, S. D., Fenaux, P., Santini, V., Bennett, J. M., Silverman, L. R., Seymour, J. F., Hellstrom-Lindberg, E., Swern, A. S., Beach, C. L., & List, A. F. (2013). A multivariate analysis of the relationship between response and survival among patients with higher-risk myelodysplastic syndromes treated within azacitidine or conventional care regimens in the randomized AZA-001 trial. Haematologica, 98, 1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Contributing to the conception and design: Xiulong Ma; analyzing and interpreting data: Chunyang Wang; drafting the article: Ling Liu, Dongli Ruan; revising it critically for important intellectual content: Liang Zhang; approving the final version to be published: all authors.

Corresponding author

Correspondence to Chunyang Wang.

Ethics declarations

Ethics Approval and Consent to Participate

This study was authorized by the PLA General Hospital, and obtained written informed consents from all the participants.

Consent for Publication

This manuscript has been approved by all authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary Figure S1. The whole uncropped images of the original MS-PCR and qRT-PCR for ITGA8 gene.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, L., Liu, L. et al. Hypermethylated ITGA8 Facilitate Bladder Cancer Cell Proliferation and Metastasis. Appl Biochem Biotechnol 196, 245–260 (2024). https://doi.org/10.1007/s12010-023-04512-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04512-y

Keywords

Navigation