Skip to main content

Advertisement

Log in

Network pharmacology integrated with molecular docking reveals the anticancer mechanism of Jasminum sambac Linn. essential oil against human breast cancer and experimental validation by in vitro and in vivo studies

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Jasminum sambac L. (J. sambac) belongs to the family Oleaceae and it is an ornamental subtropical evergreen shrub used in traditional treatments of certain ailments and diseases. This study aimed at devising an integrated strategy attempts to evaluate the bioactive components in the J. sambac essential oil (JEO) against human breast cancer. JEO extracted by distillation process and analyzed by GC–MS was subjected to screening of therapeutic components in their allegiance to the drug-likeness index. The utility and efficacy of its molecular mechanism relating to anticancer potential were probed with network pharmacology analysis. Gene ontology, pathway enrichment, and compound-target-pathway network by Cytoscape helped to harp on hub targets and pathways involved in curative action. Drawing from the network data, molecular docking analysis of selected compounds on breast cancer targets was approached. The anti-proliferative study was carried out in MCF-7 and MDA-MB-231 to evaluate the cytotoxicity of JEO. Finally, in vivo anticancer activity was verified using rat models. The results showed MDA-MB-231 cell growth was highly inhibited than the MCF-7 cell line. Alongside this in vitro trial, in situ effectiveness of JEO was evaluated using female Sprague–Dawley rat animal models. In vivo experiments and histopathological analysis showed convincing results in DMBA tumor-induced rats. The larger aim of this study is to identify the potential ingredients of the JEO in cancer apoptosis by integrating network pharmacology and experimental validation achieved to certain extent confers credence to the concept of hiring J. sambac as floral therapy in dealing with the disastrous disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. World Health Organisation. (2015). Cancer.

  2. Vibala, B. V., Praseetha, P. K., & Vijayakumar, S. (2020). Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach-A review. Gene Reports, 18, 100553.

    Article  Google Scholar 

  3. Greenwell, M., & Rahman, P. K. S. M. (2015). Medicinal plants: Their use in anticancer treatment. International journal of pharmaceutical sciences and research, 6(10), 4103.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrade, M. A., Braga, M. A., Cesar, P. H., Trento, M. V. C., Espósito, M. A., Silva, L. F., & Marcussi, S. (2018). Anticancer properties of essential oils: An overview. Current cancer drug targets, 18(10), 957–966.

    Article  CAS  PubMed  Google Scholar 

  5. Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts, and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90, 153626.

    Article  PubMed  Google Scholar 

  6. Ni, Z. J., Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J. G., ..., & Wei, Z. J. (2021). Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends in Food Science & Technology, 110, 78–89.

  7. Khan, I. A., Hussain, M., Munawar, S. H., Iqbal, M. O., Arshad, S., Manzoor, A., ... & Syed, S. K. (2021). Jasminum sambac: A potential candidate for drug development to cure cardiovascular ailments. Molecules26(18), 5664.

  8. Gokila Lakshmi. S., LydialPushpapatha, G., Nithya, T. G., & Abraham. G. C. (2021). Salicylic acid triggered flowering in the biomedical ornamental J sambac L. Turkish journal of qualitative inquiry Volume 12, Issue 10, October 2021:2931–2942. http://www.who.int/mediacentre/factsheets/fs297/en/

  9. Mourya, N. M. N., Bhopte, D. B. D., & Sagar, R. S. R. (2017). A review on Jasminum sambac: A potential medicinal plant. International Journal of Indigenous Herbs and Drugs, 13–16.

  10. Dai, S. X., Li, W. X., Han, F. F., Guo, Y. C., Zheng, J. J., Liu, J. Q., ... & Huang, J. F. (2016). In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Scientific Reports, 6(1), 1–11.

  11. Hamza, A. A., Khasawneh, M. A., Elwy, H. M., Hassanin, S. O., Elhabal, S. F., & Fawzi, N. M. (2022). Salvadora persica attenuates DMBA-induced mammary cancer through the downregulation of oxidative stress, estrogen receptor expression and proliferation, and augmenting apoptosis. Biomedicine & Pharmacotherapy, 147, 112666.

    Article  CAS  Google Scholar 

  12. Edris, A. E., Chizzola, R., & Franz, C. (2008). Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. European Food Research and Technology, 226(3), 621–626.

    Article  CAS  Google Scholar 

  13. Younis, A., Akhtar, G., Ameer, K., Farooq, A., Hanif, M. A., Saeed, M., & Lim, K. B. (2017). Research article comparative efficacy of various essential oil extraction techniques on oil yield and quality of Jasminum sambac L. Ahsan Akram Institute of Horticultural Science, University of Agriculture, 38040 Faisalabad, Pakistan. Science International5(3).

  14. Sparkman, O. D. (2005). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P .Adams. Journal of the American Society for Mass Spectrometry, 16(11), 1902.

    Article  CAS  Google Scholar 

  15. Sousa, A. J., Oliveira, G. L., Fonseca, L., Rocha, M. S., Rai, M., Santos, F. E., & Lima, S. G. D. (2022). Antioxidant properties of Croton zehntneri Pax et Hoffm. essential oil and its inclusion complex with β-cyclodextrin prepared by spray drying. Journal of the Brazilian Chemical Society, 33, 1244–1253.

    CAS  Google Scholar 

  16. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tung, C. W., Wang, C. C., Wang, S. S., & Lin, P. (2018). ChemDIS-Mixture: An online tool for analyzing potential interaction effects of chemical mixtures. Scientific Reports, 8(1), 1–6.

    Article  Google Scholar 

  18. Yang, L., Gao, S., Su, Z., Qin, X., & Li, Z. (2021). Identification of the constituents and the cancer-related targets of the fruit of Solanumnigrum based on molecular docking and network pharmacology. Journal of Pharmaceutical and Biomedical Analysis, 200, 114067.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, X. W., Lu, H. Y., Xu, Z. H., Zhang, Y. S., & Zhao, Q. C. (2021). Network pharmacology-based research uncovers cold resistance and the thermogenesis mechanism of Cinnamomum cassia. Fitoterapia, 149, 104824.

    Article  PubMed  Google Scholar 

  20. Noor, F., Rehman, A., Ashfaq, U. A., Saleem, M. H., Okla, M. K., Al-Hashimi, A., ... & Aslam, S. (2022). Integrating network pharmacology and molecular docking approaches to decipher the multi-target pharmacological mechanism of Abrusprecatorius L. acting on diabetes. Pharmaceuticals, 15(4), 414.

  21. Sharma, A. D., & Kaur, I. (2022). GC-FID based aromatic profiling and molecular docking studies of lemon grass (Cymbopogon citratusL.) essential oil as novel therapeutic for SARS-Cov2 spike protein. Arabian Journal of Medicinal and Aromatic Plants, 8(1), 1–20.

    CAS  Google Scholar 

  22. Rani, A., Yadav, D. S., Kumar, A., Jaitak, V., & Bast, F. (2022). In vitro evaluation of antiproliferative and antioxidant activities of methanolic extracts of Gracilariacorticata and Gracilariafoliifera against breast cancer cells.

  23. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  24. Benakanakere, I., Besch-Williford, C., Carroll, C. E., & Hyder, S. M. (2010). Synthetic progestins differentially promote or prevent 7, 12-dimethylbenz (a) anthracene–induced mammary tumors in Sprague-Dawley rats. Role of progestins in breast cancer. Cancer Prevention Research, 3(9), 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  25. Lowe, S. W., & Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21(3), 485–495.

    Article  CAS  PubMed  Google Scholar 

  26. Balasenthil, S., & Nagini, S. (2000). Inhibition of 7, 12-dimethylbenz [a] anthracene-induced hamster buccal pouch carcinogenesis by S-allylcysteine. Oral oncology, 36(4), 382–386.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher, B., Costantino, J. P., Wickerham, D. L., Redmond, C. K., Kavanah, M., Cronin, W. M., ..., &Wolmark, N. (1998). Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. JNCI: Journal of the National Cancer Institute, 90(18), 1371–1388.

  28. Ei-Bayoumy, K. (1994). Evaluation of chemopreventive agents against breast cancer and proposed strategies for future clinical intervention trials. Carcinogenesis, 15(11), 2395–2420.

    Article  Google Scholar 

  29. Mahesh, A. R., Kumar, H., Ranganath, M. K., & Devkar, R. A. (2012). Detail study on Boerhaavia diffusa plant for its medicinal importance-A review. Res J Pharm Sci, 1(1), 28–36.

    Google Scholar 

  30. Ma, D. F., Katoh, R., Zhou, H., & Wang, P. Y. (2007). Promoting effects of milk on the development of 7, 12-dimethylbenz (a) anthracene (DMBA)-induced mammary tumors in rats. Acta Histochemica et Cytochemica, 40(2), 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82(1), 70–77.

    Article  CAS  PubMed  Google Scholar 

  32. Hall, P. A., Levison, D. A., Woods, A. L., Yu, C. W., Kellock, D. B., Watkins, J. A., & Lane, D. P. (1990). Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: An index of cell proliferation with evidence of deregulated expression in some, neoplasms. The Journal of pathology, 162(4), 285–294.

    Article  CAS  PubMed  Google Scholar 

  33. Moron, M. S., Depierre, J. W., &Mannervik, B. (1979). Levels of glutathione, glutathione reductase, and glutathione S-transferase activities in rat lung and liver. Biochimica et biophysica acta (BBA)-general subjects582(1), 67–78.Desai, I. D. (1984). [16] Vitamin E analysis methods for animal tissues. In Methods in enzymology (Vol. 105, pp. 138–147). Academic press.

  34. Omaye, S. T., Turnbull, J. D., &Sauberlich, H. E. (1979). [1] Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. In Methods in enzymology (Vol. 62, pp. 3–11). Academic press.

  35. Stoltenberg, M., Spence, D., Daubman, B. R., Greaves, N., Edwards, R., Bromfield, B., et al. (2020). The central role of provider training in implementing resource-stratified guidelines for palliative care in low-income and middle-income countries: Lessons from the Jamaica Cancer Care and Research Institute in the Caribbean and Universidad Catolica in Latin America. Cancer, 126(Suppl 10), 2448–2457.

    Article  PubMed  Google Scholar 

  36. McGrowder, D. A., Miller, F. G., Nwokocha, C. R., Anderson, M. S., Wilson-Clarke, C., Vaz, K., ... & Brown, J. (2020). Medicinal herbs used in the traditional management of breast cancer: mechanisms of action. Medicines, 7(8), 47.

  37. Temraz, A., Cioni, P. L., Flamini, G., &Braca, A. (2009). Chemical composition of the essential oil from Jasminum pubescens leaves and flowers. Natural Product Communications, 4(12), 1934578X0900401223.

  38. Edris, A. E., Chizzola, R., & Franz, C. (2008). Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. European Food Research and Technology, 226(3), 621–626.

    Article  CAS  Google Scholar 

  39. Rassem, H. H., Nour, A. H., & Yunus, R. M. (2018). Gc-Ms analysis of bioactive constituents of Jasmine flower. Journal of Chemical Engineering and Industrial Biotechnology, 4(1), 52–59.

    Article  Google Scholar 

  40. Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daina, A., & Zoete, V. (2016). A boiled egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fromm, M. F. (2000). P-glycoprotein a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. International Journal of Clinical Pharmacology & Therapeutics, 38(2), 69–74.

    Article  CAS  Google Scholar 

  43. Madia, F., Worth, A., Whelan, M., & Corvi, R. (2019). Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. Environment international, 128, 417–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Potočnjak, I., Gobin, I., & Domitrović, R. (2018). Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK–ERK activation. Phytotherapy Research, 32(6), 1090–1097.

    Article  PubMed  Google Scholar 

  45. Sandner, G., Heckmann, M., & Weghuber, J. (2020). Immunomodulatory activities of selected essential oils. Biomolecules, 10(8), 1139. https://doi.org/10.3390/biom10081139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zu, Y., Yu, H., Liang, L., Fu, Y., Efferth, T., Liu, X., & Wu, N. (2010). Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549, and MCF-7 cancer cells. Molecules, 15(5), 3200–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Attallah, O. A., Shetta, A., Elshishiny, F., & Mamdouh, W. (2020). Essential oil-loaded pectin/chitosan nanoparticles preparation and optimization via Box-Behnken design against MCF-7 breast cancer cell lines. RSC advances, 10(15), 8703–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang, M. Y., & Shen, Y. L. (2014). Linalool exhibits cytotoxic effects by activating antitumor immunity. Molecules (Basel, Switzerland), 19(5), 6694–6706. https://doi.org/10.3390/molecules19056694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Liu, C., Cen, J., Liang, T., Xue, J., Zeng, H., ...& Zeng, J. (2020). KEGG-expressed genes and pathways in triple-negative breast cancer: Protocol for a systematic review and data mining. Medicine, 99(18).

  50. Friesenhengst, A., Pribitzer-Winner, T., Miedl, H., Pröstling, K., & Schreiber, M. (2018). Elevated aromatase (CYP19A1) expression is associated with poor survival of patients with estrogen receptor positive breast cancer. Hormones and Cancer, 9(2), 128–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flohe, L., & Otting, F. (1984). Superoxide dismutase assays. Meth. Enzymol, 105, 93.

    Article  CAS  Google Scholar 

  52. Cardiv, R. D., & Wellings, S. R. (1999). The comparative pathology of human and mouse mammary glands. Journal of Mammary Gland Biology and Neoplasia, 4, 10.

    Google Scholar 

  53. Ray, G., Batra, S., Shukla, N. K., Deo, S., Raina, V., Ashok, S., & Husain, S. A. (2000). Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Research and Treatment, 59, 163–170.

    Article  CAS  PubMed  Google Scholar 

  54. Cotgreave, I., Moldens, P., & Orrenius, S. (1988). Host biochemical defense mechanisms against prooxidants. Annual Review of Pharmacology and Toxicology, 28, 189–212.

    Article  CAS  PubMed  Google Scholar 

  55. Jagetia, G. C., & Rao, S. K. (2006). Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice. Biological &/and Pharmaceutical Bulletin, 29, 460–466.

    Article  CAS  Google Scholar 

  56. Giri, U., Sharma, S. D., Abdulla, M., & Athar, M. (1995) Evidence that in situ generated reactive oxygen species act as a potent stage I tumor promoter in mouse skin. BiochemBiophys Res Commun 209(2):698–705. International Journal of Current Advanced Research 6(11), 7775–7781.

  57. Yan, Y., Wei, C. L., Zhang, W. R., Cheng, H. P., & Liu, J. (2006). Crosstalk between calcium and reactive oxygen species signaling. Acta Pharmacologica Sinica, 27(7), 821–826.

    Article  CAS  PubMed  Google Scholar 

  58. Gonenc, A., Erten, D., Aslan, S., Akyncy, M., Sximsxek, B., & Torun, M. (2006). Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumour and benign breast disease. Cell Biology International, 30(4), 376–380.

    Article  PubMed  Google Scholar 

  59. Weydert, C. J., Waugh, T. A., Ritchie, J. M., Iyer, K. S., Smith, J. L., Li, L., Spitz, D. R., & Oberley, L. W. (2006). Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radical Biology & Medicine, 41, 226–237.

    Article  CAS  Google Scholar 

  60. Bewick, M., & CoutieW, T. G. R. (1987). Superoxide dismutase, glutathione peroxidase and catalase in the red cells of patients with malignant lymphoma. British Journal of Haematology, 65, 347–350. https://doi.org/10.1111/j.1365-2141.1987.tb06866.x

    Article  CAS  PubMed  Google Scholar 

  61. Cerutti, P., Ghosh, R., Oya, Y., & Amstad, P. (1994). The role of cellular antioxidant defence in oxidant carcinogenesis. Environmental Health Perspectives, 102(10), 123–129. https://doi.org/10.2307/3432228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta, M., Mazumder, U. K., Kumar, R. S., Sivakumar, T., & Vamsi, M. L. (2004). Antitumour activity and antioxidant status of Caesalpinia bonducella against Ehrlich ascites carcinoma in swiss albino mice. Journal of Pharmacological Sciences, 94(2), 177–184.

    Article  CAS  PubMed  Google Scholar 

  63. Kolanjiappan, K., Manoharan, S., & Kayalvizhi, M. (2002). Measurement of erythrocyte lipids, lipid peroxidation antioxidants and osmotic fragility in cervical cancer patients. ClinicaCheimica Acta, 326, 143–149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Gokila Lakshmi: conceptualization, methodology, visualization. M. Kamaraj: editing, data validation, review. T.G. Nithya: supervision. N. Chidambaranathan: investigation. G. Grace Lydial Pushpalatha: editing. P. Santhosh: writing original draft. B. Balavaishnavi: data curation. Megha Mahajan: writing review. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to T. G. Nithya.

Ethics declarations

Ethics approval

Tumor induction experiments and the protocol followed in the study conform with the guidelines for breeding and experiments on animals stipulated by the Ministry, GoI, approved before the Institutional Animal Ethics Committee at KM College of Pharmacy, Utthangudi, Madurai, India (Proposal No. IAEC/GOKILA LAKSHMI S/SRMIST/PhD/RA2033015011004/KMCP/123/2021).

Consent to Participate

Not applicable.

Consent for Publication

All authors agree to publish the article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, S.G., Kamaraj, M., Nithya, T.G. et al. Network pharmacology integrated with molecular docking reveals the anticancer mechanism of Jasminum sambac Linn. essential oil against human breast cancer and experimental validation by in vitro and in vivo studies. Appl Biochem Biotechnol 196, 350–381 (2024). https://doi.org/10.1007/s12010-023-04481-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04481-2

Keywords

Navigation