Skip to main content

Advertisement

Log in

Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomasses are extensively used by researchers to produce a variety of renewable bioproducts. This research described an environment-friendly technique of xylitol production by an adapted strain of Candida tropicalis from areca nut hemicellulosic hydrolysate, produced through enzymatic hydrolysis. To enhance the activity of xylanase enzymes, lime and acid pretreatment was conducted to make biomass more amenable for saccharification. To improve the efficiency of enzymatic hydrolysis, saccharification parameters like xylanase enzyme loading were varied. Results exposed that the highest yield (g/g) of reducing sugar, about 90%, 83%, and 15%, were achieved for acid-treated husk (ATH), lime-treated husk (LTH), and raw husk (RH) at an enzyme loading of 15.0 IU/g. Hydrolysis was conducted at a substrate loading of 2% (w/V) at 30 °C, 100 rpm agitation, for 12 h hydrolysis time at pH 4.5 to 5.0. Subsequently, fermentation of xylose-rich hemicellulose hydrolysate was conducted with pentose utilizing the yeast Candida tropicalis to produce xylitol. The optimum concentration of xylitol was obtained at about 2.47 g/L, 3.83 g/L, and 5.88 g/L, with yields of approximately 71.02%, 76.78%, and 79.68% for raw fermentative hydrolysate (RFH), acid-treated fermentative hydrolysate (ATFH), and lime-treated fermentative gydrolysate (LTFH), respectively. Purification and crystallization were also conducted to separate xylitol crystals, followed by characterization like X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Results obtained from crystallization were auspicious, and about 85% pure xylitol crystal was obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors, upon reasonable request.

Abbreviations

ATEH:

Acid-treated enzymatic hydrolysate

ATFH:

Acid-treated fermentative hydrolysate

ATH:

Acid-treated husk

CMC:

Carboxy methyl cellulose

CrI:

Crystallinity index

DNS:

Di-nitrosalicylic acid

FESEM:

Field emission scanning electron microscopy

FXC:

Fermented xylitol crystal

HMF:

Hydroxymethylfurfural

LTEH:

Lime-treated enzymatic hydrolysate

LTFH:

Lime-treated fermentative hydrolysate

LTH:

Lime-treated husk

MB:

Methylene blue

MBS:

Methylene blue staining

MTCC:

Microbial Type Culture Collection

OPEFB:

Oil palm empty fruit bunch

REH:

Raw enzymatic hydrolysate

RFH:

Raw fermentative hydrolysate

RH:

Raw husk

SSFH:

Synthetic solution fermentative hydrolysate

XCCX:

Xylitol crystal from commercial xylitol

XRD:

X-ray diffraction

YPD :

Yeast extract, peptone, and dextrose

References

  1. Ranjithkumar, M., Ravikumar, R., Sankar, M. K., Kumar, M. N., & Thanabal, V. (2017). An effective conversion of cotton waste biomass to ethanol: A critical review on pretreatment processes. Waste and Biomass Valorization, 8(1), 57–68. https://doi.org/10.1007/S12649-016-9563-8/TABLES/2

    Article  CAS  Google Scholar 

  2. Keshav, P. K., Naseeruddin, S., & Rao, L. V. (2016). Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresource Technology, 214, 363–370. https://doi.org/10.1016/J.BIORTECH.2016.04.108

    Article  CAS  PubMed  Google Scholar 

  3. Da Silva, A. S. A., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101(19), 7402–7409. https://doi.org/10.1016/J.BIORTECH.2010.05.008

    Article  PubMed  Google Scholar 

  4. de Araújo, C. K. C., de Oliveira Campos, A., de Araújo Padilha, C. E., de Sousa Júnior, F. C., do Nascimento, R. J. A., de Macedo, G. R., & dos Santos, E. S. (2017). Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation. Bioresource Technology, 237, 20–26. https://doi.org/10.1016/J.BIORTECH.2017.03.178

    Article  PubMed  Google Scholar 

  5. Vardhan, H., Mahato, R. B., Sasmal, S., & Mohanty, K. (2022). Production of xylose from pre-treated husk of areca nut. Journal of Natural Fibers, 19(1), 131–144. https://doi.org/10.1080/15440478.2020.1731905

    Article  CAS  Google Scholar 

  6. Goli, J. K., & Hameeda, B. (2021). Production of xylitol and ethanol from acid and enzymatic hydrolysates of Typha latifolia by Candida tropicalis JFH5 and Saccharomyces cerevisiae VS3. Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/S13399-021-01868-1/FIGURES/6

  7. Felipe Hernández-Pérez, A., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., de AFelipi Almeida, M., & Das, G. (2019). Xylitol bioproduction: State-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  CAS  PubMed  Google Scholar 

  8. Unrean, P., & Ketsub, N. (2018). Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial Crops and Products, 123, 238–246. https://doi.org/10.1016/J.INDCROP.2018.06.071

    Article  CAS  Google Scholar 

  9. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP) issue date: 7/17/2005. Retrieved from www.nrel.gov

  10. Meddeb-Mouelhi, F., Moisan, J. K., & Beauregard, M. (2014). A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66, 16–19. https://doi.org/10.1016/J.ENZMICTEC.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  11. Martins, M., Henriques, M., Azeredo, J., Rocha, S. M., Coimbra, M. A., & Oliveira, R. (2007). Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryotic Cell, 6(12), 2429–2436. https://doi.org/10.1128/EC.00252-07/ASSET/372A4F99-9812-40E2-9A8A-D1DB245418CE/ASSETS/GRAPHIC/ZEK0120730350003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martínez, E. A., Canettieri, E. V. C., Bispo, J. A., Giulietti, M., de Almeida Silva, J. B., Converti, A., & de Almeida, J. B. (2015). Strategies for xylitol purification and crystallization: A review. Separation Science and Technology, 50, 2087–2098. https://doi.org/10.1080/01496395.2015.1009115

    Article  CAS  Google Scholar 

  13. Goli, J. K., & Hameeda, B. (2021). Production of xylitol and ethanol from acid and enzymatic hydrolysates of Typha latifolia by Candida tropicalis JFH5 and Saccharomyces cerevisiae VS3. Biomass Conversion and Biorefinery, 1, 1–11. https://doi.org/10.1007/S13399-021-01868-1/FIGURES/6

    Article  Google Scholar 

  14. Martín, C., De Moraes Rocha, G. J., Dos Santos, J. R. A., De Albuquerque Wanderley, M. C., & Gouveia, E. R. (2012). Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse. Química Nova, 35(10), 1927–1930. https://doi.org/10.1590/S0100-40422012001000007

    Article  Google Scholar 

  15. Vardhan, H., Sasamal, S., & Mohanty, K. (2022). Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochemistry, 122(P2), 146–159. https://doi.org/10.1016/j.procbio.2022.10.005

    Article  CAS  Google Scholar 

  16. Sun, X. F., Xu, F., Sun, R. C., Fowler, P., & Baird, M. S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340(1), 97–106. https://doi.org/10.1016/J.CARRES.2004.10.022

    Article  CAS  PubMed  Google Scholar 

  17. Julie Chandra, C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers, 142, 158–166. https://doi.org/10.1016/J.CARBPOL.2016.01.015

    Article  Google Scholar 

  18. Li, Z., Guo, X., Feng, X., & Li, C. (2015). An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis. Chemical Engineering Journal, 263, 249–256. https://doi.org/10.1016/J.CEJ.2014.11.013

    Article  CAS  Google Scholar 

  19. Chosdu, R., Hilmy, N., ErizalErlinda, T. B., & Abbas, B. (1993). Radiation and chemical pretreatment of cellulosic waste. Radiation Physics and Chemistry, 42(4–6), 695–698. https://doi.org/10.1016/0969-806X(93)90354-W

    Article  CAS  Google Scholar 

  20. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100(3), 1285–1290. https://doi.org/10.1016/J.BIORTECH.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioproducts and Biorefining, 6(4), 465–482. https://doi.org/10.1002/BBB.1331

    Article  CAS  Google Scholar 

  22. Cai, C., Bao, Y., Li, F., Pang, Y., Lou, H., Qian, Y., & Qiu, X. (2020). Using highly recyclable sodium caseinate to enhance lignocellulosic hydrolysis and cellulase recovery. Bioresource Technology, 304, 122974. https://doi.org/10.1016/J.BIORTECH.2020.122974

    Article  CAS  PubMed  Google Scholar 

  23. Rafał Łukajtis, Piotr Rybarczyk *, Karolina Kucharska, D. K.-Ł., & Edyta Słupek, K. W. and M. K. ´nski. (2018). Optimization of saccharification conditions of lignocellulosic biomass under alkaline. https://doi.org/10.3390/en11040886

  24. Tavares, J. M., Duarte, L. C., Amaral-Collaço, M. T., & Gírio, F. M. (2000). The influence of hexoses addition on the fermentation of d-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme and Microbial Technology, 26(9–10), 743–747. https://doi.org/10.1016/S0141-0229(00)00166-6

    Article  CAS  PubMed  Google Scholar 

  25. Rivas, B., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2002). Bioconversion of posthydrolysed autohydrolysis liquors: An alternative for xylitol production from corn cobs. Enzyme and Microbial Technology, 31(4), 431–438. https://doi.org/10.1016/S0141-0229(02)00098-4

    Article  CAS  Google Scholar 

  26. Tada, K., Horiuchi, J. I., Kanno, T., & Kobayashi, M. (2004). Microbial xylitol production from corn cobs using Candida magnoliae. Journal of bioscience and bioengineering, 98(3), 228–230. https://doi.org/10.1016/S1389-1723(04)00273-7

    Article  CAS  PubMed  Google Scholar 

  27. de Albuquerque, T. L., Gomes, S. D. L., Marques, J. E., da Silva, I. J., & Rocha, M. V. P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 255, 33–40. https://doi.org/10.1016/J.CATTOD.2014.10.054

    Article  Google Scholar 

  28. Li, M., Meng, X., Diao, E., & Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. Journal of Chemical Technology & Biotechnology, 87(3), 387–392. https://doi.org/10.1002/JCTB.2732

    Article  CAS  Google Scholar 

  29. Carvalheiro, F., Duarte, L. C., Medeiros, R., & Gírio, F. M. (2007). Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: Effect of supplementation. Biotechnology letters, 29(12), 1887–1891. https://doi.org/10.1007/S10529-007-9468-5

    Article  CAS  PubMed  Google Scholar 

  30. Baek, S. C., & Kwon, Y. J. (2007). Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnology and Bioprocess Engineering, 12(4), 404–409. https://doi.org/10.1007/BF02931063

    Article  CAS  Google Scholar 

  31. Mardawati, E., Maharani, N., Wira, D. W., Harahap, B. M., Yuliana, T., & Sukarminah, E. (2020). Xylitol production from oil palm empty fruit bunches (OPEFB) via simultaneous enzymatic hydrolysis and fermentation process. Journal of Industrial and Information Technology in Agriculture, 2(1), 29–36. https://doi.org/10.24198/JIITA.V2I1.25064

    Article  Google Scholar 

  32. Harahap, B. M., & Kresnowati, M. T. A. P. (2018). Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation. Biomass Conversion and Biorefinery, 8(2), 255–263. https://doi.org/10.1007/S13399-017-0299-X/TABLES/3

    Article  CAS  Google Scholar 

  33. Wang, L., Yang, M., Fan, X., Zhu, X., Xu, T., & Yuan, Q. (2011). An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochemistry, 46(8), 1619–1626. https://doi.org/10.1016/J.PROCBIO.2011.05.004

    Article  CAS  Google Scholar 

  34. Cao, N. J., Tang, R., Gong, C. S., & Chen, L. F. (1994). The effect of cell density on the production of xylitol fromd-xylose by yeast. Applied Biochemistry and Biotechnology, 45(1), 515–519. https://doi.org/10.1007/BF02941826

    Article  PubMed  Google Scholar 

  35. Vandeska, E., Amartey, S., Kuzmanova, S., & Jeffries, T. (1995). Effects of environmental conditions on production of xylitol by Candida boidinii. World Journal of Microbiology and Biotechnology, 11(2), 213–218. https://doi.org/10.1007/BF00704652

    Article  CAS  PubMed  Google Scholar 

  36. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 65(3), 191–201. https://doi.org/10.1016/S0960-8524(98)00038-8

    Article  Google Scholar 

  37. Martínez, E. A., de Almeida e Silva, J. B., Giulietti, M., & Solenzal, A. I. N. (2007). Downstream process for xylitol produced from fermented hydrolysate. Enzyme and Microbial Technology, 40(5), 1193–1198. https://doi.org/10.1016/J.ENZMICTEC.2006.09.003

    Article  Google Scholar 

  38. Marques Júnior, J. E., & Rocha, M. V. P. (2021). Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock. Bioprocess and Biosystems Engineering, 44(4), 713–725. https://doi.org/10.1007/S00449-020-02480-9/FIGURES/9

    Article  PubMed  Google Scholar 

  39. Kresnowati, M. T. A. P., Regina, D., Bella, C., Wardani, A. K., & Wenten, I. G. (2019). Combined ultrafiltration and electrodeionization techniques for microbial xylitol purification. Food and Bioproducts Processing, 114, 245–252. https://doi.org/10.1016/J.FBP.2019.01.005

    Article  CAS  Google Scholar 

  40. Wei, J., Yuan, Q., Wang, T., & Wang, L. (2010). Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Engineering in China, 4(1), 57–64. https://doi.org/10.1007/S11705-009-0295-1

    Article  CAS  Google Scholar 

  41. Sampaio, F. C., Passos, F. M. L., Passos, F. J. V., De Faveri, D., Perego, P., & Converti, A. (2006). Xylitol crystallization from culture media fermented by yeasts. Chemical Engineering and Processing: Process Intensification, 45(12), 1041–1046. https://doi.org/10.1016/J.CEP.2006.03.012

    Article  CAS  Google Scholar 

  42. Deng, L. H., Tang, Y., & Liu, Y. (2014). Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis. Scientific World Journal. https://doi.org/10.1155/2014/214632

  43. Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601. https://doi.org/10.1016/J.CARBPOL.2012.11.033

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Present research work vides grant no. (BT/PR16747/NER/95/271/2015) was financially supported by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Harsha Vardhan, Soumya Sasmal, and Kaustubha Mohanty. The first draft of the manuscript was written by Harsha Vardhan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Soumya Sasamal or Kaustubha Mohanty.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardhan, H., Sasamal, S. & Mohanty, K. Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization. Appl Biochem Biotechnol 195, 7298–7321 (2023). https://doi.org/10.1007/s12010-023-04469-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04469-y

Keywords

Navigation