Skip to main content
Log in

Modeling of Cadmium Bioaccumulation Dynamics in Channa punctata (Bloch, 1793) of Dankuni Wetland Ecosystem and Assessment of Risk to Human Health

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Contamination of freshwater wetlands with toxic heavy metals and metalloids is a significant public health concern. Cadmium (Cd) is one of the most common heavy metals affecting water bodies and fish. In the Dankuni wetland (DW) ecosystem in India, variations in Cd concentration from the aquatic system to different fish tissues have been investigated. Channa punctata is an easily accessible fish with a high nutritional value, and offers a good economic return for the fishermen of West Bengal. A dynamic model was constructed considering the importance of the Cd concentration in the water of the wetland system and different fish tissues. A sensitivity analysis was performed to assess the valuable contribution of different parameters that determine the dynamics of Cd concentration in a wetland aquatic environment. The observed data is used to verify the model simulation performance. To predict the effects of Cd on humans, a survey of fish consumers was conducted around DW. Individuals living near DW, on low income (<5,000 INR) and over the age of fifty, were at high risk of Cd contamination. Their average daily intake rate was quite high (2.48×10−5 mg kg−1 day−1) and the hazard quotient calculated for these individuals was also high (0.024). People over age of 50 years had renal, cardiovascular, and osteological diseases with disease percentages of 56%, 46%, and 45%, respectively. Data on Cd-related health problems were collected from Cd-associated and non-Cd-associated individuals residing in the periphery of DW. The system-sensitive parameter was the rate of Cd entry into the water system (C Inp rt). If the Cd level is checked at the entrance of the reservoir by management policy; the risk of Cd contamination to human may be minimized in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

References

  1. Sastry, K. V., & Shukla, V. (1994). Influence of protective agents in the toxicity of cadmium to a freshwater fish (Channa punctatus). Bulletin of Environmental Contamination and Toxicology, 53(5), 711–717. https://doi.org/10.1007/bf00196944

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh, S., Mal, M., & Mandal, S. (2020). A dynamic model of cadmium bioaccumulation in Lamellidens marginalis, an edible shellfish in India. Ecological Modelling, 419, 108957. https://doi.org/10.1016/j.ecolmodel.2020.108957

    Article  CAS  Google Scholar 

  3. Blizzard, A. F., & Mangun, W. R. (2008). Intergovernmental influences on the implementation of coastal zone management in the United States: Public shoreline access in the Southeast. Ocean and Coastal Management, 51(6), 443–449. https://doi.org/10.1016/j.ocecoaman.2008.04.002

    Article  Google Scholar 

  4. Luoma, S. N. (1989). Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia, 176(1), 379–396. https://doi.org/10.1007/BF00026572

    Article  Google Scholar 

  5. Shaukat, N., Javed, M., Ambreen, F., & Latif, F. (2018). Oxidative stress biomarker in assessing the lead induced toxicity in commercially important fish Labeo rohita. Pakistan. Journal of Zoology, 50(2). https://doi.org/10.17582/journal.pjz/2018.50.2.735.741

  6. Karnatak, G., Sarkar, U. K., Naskar, M., Roy, K., Gupta, S., Nandy, S. K., et al. (2018). Understanding the role of climatic and environmental variables in gonadal maturation and spawning periodicity of spotted snakehead, Channa punctata (Bloch, 1793) in a tropical floodplain wetland, India. Environmental Biology of Fishes, 101(4), 595–607. https://doi.org/10.1007/s10641-018-0722-6

    Article  Google Scholar 

  7. Birungi, Z., Masola, B., Zaranyika, M. F., Naigaga, I., & Marshall, B. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 32(15-18), 1350–1358. https://doi.org/10.1016/j.pce.2007.07.034

    Article  Google Scholar 

  8. Palm, H. W. (2011). Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and climate change? Progress in Parasitology, 223-250. https://doi.org/10.1007/978-3-642-21396-0_12

  9. Li, P., Zhang, J., Xie, H., Liu, C., Liang, S., Ren, Y., et al. (2015). Heavy metal bioaccumulation and health hazard assessment for three fish species from Nansi Lake, China. Bulletin of Environmental Contamination and Toxicology, 94(4), 431–436. https://doi.org/10.1007/s00128-015-1475-y

    Article  CAS  PubMed  Google Scholar 

  10. Ali, H., & Khan, E. (2018). Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environmental Chemistry Letters, 16(3), 903–917. https://doi.org/10.1007/s10311-018-0734-7

    Article  CAS  Google Scholar 

  11. Alam, A., Joshi, K. D., Das, S. C. S., Jha, D. N., Srivastava, K., Kumar, V., & Bhattacharjya, B. K. (2017). Enhancing fish productivity through pen culture: A case study in Sareni wetland of Uttar Pradesh. Indian Journal of Fisheries, 64, 8–13. https://doi.org/10.21077/ijf.2017.64.special-issue.76184-02

    Article  Google Scholar 

  12. Bogard, J. R., Thilsted, S. H., Marks, G. C., Wahab, M. A., Hossain, M. A. R., Jakobsen, J., & Stangoulis, J. (2015). Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. Journal of Food Composition and Analysis, 42, 120–133. https://doi.org/10.1016/j.jfca.2015.03.002

    Article  CAS  Google Scholar 

  13. Ikasari, D., & Donny, Y. (2018). Utilization of snakehead fish (Channa striata) extraction by product into fish protein concentrate using acid and alkali solubilization methods. AIP Conference Proceedings, 2049(1), 030004. https://doi.org/10.1063/1.5082505

    Article  CAS  Google Scholar 

  14. Javed, M., & Usmani, N. (2015). Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent. Saudi Journal of Biological Sciences, 22(2), 237–242. https://doi.org/10.1016/j.sjbs.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  15. Amzad, H. M., Sohel, M., Mariya, A., Fazley, R. A., Marine, S. S., Rahman, M. A., Mahbub, I. M., Jakiul, I. M., Hassan, M. M., & Hossain, M. M. (2015). Ovarian biology of spotted snakehead (Channa punctatus) from natural wetlands of Sylhet, Bangladesh. Annals of Veterinary and Animal Science, 2(3), 64–76.

    Google Scholar 

  16. Chakraborty, R., Das, S. K., & Bhakta, D. (2017). Length-weight relationship, relative condition factor and food and feeding habits of Channa striata from wetlands of Nadia district, West Bengal. Journal of the Inland Fisheries Society of India, 49(2), 22–26.

    Google Scholar 

  17. Prasad, L., Dwivedi, A. K., Dubey, V. K., & Serajuddin, M. (2011). Reproductive biology of freshwater murrel, Channa punctatus (Bloch, 1793) from river Varuna (A tributary of Ganga River) in India. Journal of Ecophysiology and Occupational Health, 11(1-2), 69–80.

    Google Scholar 

  18. Karnatak, G., Sarkar, U. K., Naskar, M., Roy, K., Nandi, S., Mishal, P., Lianthuamluaia, L., Kumari, S., & Das, B. K. (2020). Modeling pre-spawning fitness and optimal climate of spotted snakehead Channa punctata (Bloch, 1793) from a Gangetic floodplain wetland of West Bengal, India. International Journal of Biometeorology, 64(11), 1889–1898.

    Article  PubMed  Google Scholar 

  19. Mahmud, N., Al-Fuad, S., Satya, S. I., Al Mamun, A., Ahmed, S., Karim, A., Islam, M., Ferdaus, J., Islam, S., Sakib, N., & Yeasmin, J. (2019). Development and biochemical composition assessment of fish powders from Bangladeshi indigenous fish species and shelf-life characteristics evaluation during 90 Days of room temperature (27°C-30°C) storage. Food and Nutrition Sciences, 10(08), 963.

    Article  CAS  Google Scholar 

  20. Shillewar, K. (2021). Fresh water fish Channa punctatus [bloch, 1793] its biomedical benefits for human beings. Asian Journal of Biomedical and Pharmaceutical Sciences, 11(80), 1–2.

    CAS  Google Scholar 

  21. Bacelar, F. S., Dueri, S., Hernández-García, E., & Zaldívar, J.-M. (2009). Joint effects of nutrients and contaminants on the dynamics of a food chain in marine ecosystems. Mathematical Biosciences, 218(1), 24–32. https://doi.org/10.1016/j.mbs.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Carafa, R., Marinov, D., Dueri, S., Wollgast, J., Giordani, G., Viaroli, P., & Zaldivar, J. M. (2009). A bioaccumulation model for herbicides in Ulva rigida and Tapes philippinarum in Sacca di Goro lagoon (Northern Adriatic). Chemosphere, 74(8), 1044–1052. https://doi.org/10.1016/j.chemosphere.2008.10.058

    Article  CAS  PubMed  Google Scholar 

  23. Dueri, S., Castro-Jiménez, J., & Zaldívar, J.-M. (2009). Modelling the influence of thermal stratification and complete mixing on the distribution and fluxes of polychlorinated biphenyls in the water column of Ispra Bay (Lake Maggiore). Chemosphere, 75(9), 1266–1272. https://doi.org/10.1016/j.chemosphere.2009.01.066

    Article  CAS  PubMed  Google Scholar 

  24. Dueri, S., Dahllöf, I., Hjorth, M., Marinov, D., & Zaldívar, J. M. (2009). Modeling the combined effect of nutrients and pyrene on the plankton population: Validation using mesocosm experiment data and scenario analysis. Ecological Modelling, 220(17), 2060–2067. https://doi.org/10.1016/j.ecolmodel.2009.04.052

    Article  CAS  Google Scholar 

  25. Marinov, D., Zaldívar, J. M., Norro, A., Giordani, G., & Viaroli, P. (2008). Integrated modelling in coastal lagoons: Sacca di Goro case study. Hydrobiologia, 611(1), 147–165. https://doi.org/10.1007/s10750-008-9451-8

    Article  CAS  Google Scholar 

  26. Pan, K., & Wang, W. X. (2008). The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquatic Toxicology, 90(4), 253–260. https://doi.org/10.1016/j.aquatox.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  27. Pan, K., & Wang, W. X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421, 3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  28. Otero-Muras, I., Franco-Uría, A., Alonso, A. A., & Balsa-Canto, E. (2010). Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications. Environmental Modelling & Software, 25(3), 344–353. https://doi.org/10.1016/j.envsoft.2009.08.009

    Article  Google Scholar 

  29. Lu, Z., Gan, J., Cui, X., Delgado-Moreno, L., & Lin, K. (2019). Understanding the bioavailability of pyrethroids in the aquatic environment using chemical approaches. Environment International, 129, 194–207. https://doi.org/10.1016/j.envint.2019.05.035

    Article  CAS  PubMed  Google Scholar 

  30. Wang, W. X., & Tan, Q. G. (2019). Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms. Environmental Pollution, 252, 1561–1573. https://doi.org/10.1016/j.envpol.2019.06.043

    Article  CAS  PubMed  Google Scholar 

  31. Wu, S., Zhang, K., Wang, X., Jia, Y., Sun, B., Luo, T., Meng, F., Jin, Z., Lin, D., Shen, W., & Kong, L. (2015). Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chemical Engineering Journal, 262, 1292–1302. https://doi.org/10.1016/j.cej.2014.10.092

    Article  CAS  Google Scholar 

  32. Adhya, T., & Banerjee, S. (2020). Continuing wetland degradation dissociates socio-ecological systems and affects interconnected goals of environmental health, equity and wellbeing: A case study from the lower gangetic floodplains. MDPI AG. https://doi.org/10.20944/preprints202007.0148.v1

  33. Bhawan, P. (2019). West Bengal Pollution Control Board. Order, 28, 04–1999.

    Google Scholar 

  34. Moore, B. C., & Stednick, J. D. (1992). Wildland water quality sampling and analysis. Journal of Range Management, 45(2), 222. https://doi.org/10.2307/4002790

    Article  Google Scholar 

  35. Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for 610 examination of water and wastewater. American Public Health Association.

    Google Scholar 

  36. Nisbet, C., Terzi, G., Pilgir, O., & Sarac, N. (2010). Determination of heavy metal levels in fish samples collected from the Middle Black Sea. Kafkas Universitesi Veteriner Fakultesi Dergisi, 16(1), 119–125.

    Google Scholar 

  37. Jørgensen, S. E. (1994). Models as instruments for combination of ecological theory and environmental practice. Ecological Modelling, 75, 5–20. https://doi.org/10.1016/0304-3800(94)90003-5

    Article  Google Scholar 

  38. Authman, M. M. N. (2015). Use of fish as bio-indicator of the effects of heavy metals pollution. Journal of Aquaculture Research & Development, 06(04), 1–13. https://doi.org/10.4172/2155-9546.1000328

    Article  CAS  Google Scholar 

  39. Yi, Y. J., & Zhang, S. H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989–3996. https://doi.org/10.1007/s11356-012-0840-1

    Article  CAS  PubMed  Google Scholar 

  40. Canli, M., Kalay, M., & Ay, Ö. (2001). Metal (Cd, Pb, Cu, Zn, Fe, Cr, Ni) concentrations in tissues of a fish and a prawn from three stations on the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 67(1), 75–82. https://doi.org/10.1007/s00128-001-0093-z

    Article  CAS  PubMed  Google Scholar 

  41. Waheed, S., Kamal, A., & Malik, R. N. (2013). Human health risk from organ-specific accumulation of toxic metals and response of antioxidants in edible fish species from Chenab River, Pakistan. Environmental Science and Pollution Research, 21(6), 4409–4417. https://doi.org/10.1007/s11356-013-2385-3

    Article  CAS  PubMed  Google Scholar 

  42. Jarić, I., Višnjić-Jeftić, Ž., Cvijanović, G., Gačić, Z., Jovanović, L., Skorić, S., & Lenhardt, M. (2011). Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchemical Journal, 98(1), 77–81. https://doi.org/10.1016/j.microc.2010.11.008

    Article  CAS  Google Scholar 

  43. Omar, W. A., Zaghloul, K. H., Abdel-Khalek, A. A., & Abo-Hegab, S. (2013). Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats. Archives of Environmental Contamination and Toxicology, 65(4), 753–764. https://doi.org/10.1007/s00244-013-9935-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siraj, M., Khisroon, M., & Khan, A. (2015). Bioaccumulation of heavy metals in different organs of Wallago attu from River Kabul Khyber Pakhtunkhwa Pakistan. Biological Trace Element Research, 172(1), 242–250. https://doi.org/10.1007/s12011-015-0572-4

    Article  CAS  PubMed  Google Scholar 

  45. Pandey, M., Pandey, A. K., Mishra, A., & Tripathi, B. D. (2017). Assessment of metal bioaccumulation in Mastacembelus armatus (eel) and exposure evaluation in human. Environmental Nanotechnology, Monitoring & Management, 7, 103–109. https://doi.org/10.1016/j.enmm.2017.02.002

    Article  Google Scholar 

  46. Thomann, R. V., Shkreli, F., & Harrison, S. (1997). A pharmacokinetic model of cadmium in rainbow trout. Environmental Toxicology and Chemistry, 16(11), 2268–2274. https://doi.org/10.1002/etc.5620161111

    Article  CAS  Google Scholar 

  47. Stewart, A. R., & Malley, D. F. (1999). Effect of metal mixture (cu, zn, pb, and ni) on cadmium partitioning in littoral sediments and its accumulation by the freshwater macrophyte Eriocaùlon septangulàre. Environmental Toxicology and Chemistry, 18(3), 436. https://doi.org/10.1897/1551-5028(1999)018<0436:eommcz>2.3.co;2

    Article  CAS  Google Scholar 

  48. Roseman, E. F., Mills, E. L., Rutzke, M., Gutenmann, W. H., & Lisk, D. J. (1994). Absorption of cadmium from water by North American zebra and quagga mussels (Bivalvia: Dreissenidae). Chemosphere, 28(4), 737–743. https://doi.org/10.1016/0045-6535(94)90227-5

    Article  CAS  Google Scholar 

  49. Shears, M. A., & Fletcher, G. L. (1984). The relationship between metallothionein and intestinal zinc absorption in the winter flounder. Canadian Journal of Zoology, 62(11), 2211–2220. https://doi.org/10.1139/z84-322

    Article  CAS  Google Scholar 

  50. Yasmeen, S. (2019). Cadmium induced histopathological alterations in female gonad of freshwater bivalve mollusks, Lamellidens marginalis during summer season. International Journal of Biological Innovations, 01(02), 73–77. https://doi.org/10.46505/ijbi.2019.1207

    Article  Google Scholar 

  51. Regoli, F. (1992). Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Marine Ecology Progress Series, 84, 63–69. https://doi.org/10.3354/meps084063

    Article  CAS  Google Scholar 

  52. He, P., Lu, Y., Liang, Y., Chen, B., Wu, M., Li, S., He, G., & Jin, T. (2013). Exposure assessment of dietary cadmium: Findings from shanghainese over 40 years, China. BMC Public Health, 13(1), 1–11. https://doi.org/10.1186/1471-2458-13-590

    Article  CAS  Google Scholar 

  53. Ghosh, S., Mondal, A., Gangopadhyay, S., & Mandal, S. (2018). Cadmium bioaccumulation in Lamellidens marginalis and human health risk assessment: A case study in India. Human and Ecological Risk Assessment, 26(3), 713–725. https://doi.org/10.1080/10807039.2018.1530588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to acknowledge the funding agency, Science and Engineering Research Board (DST-SERB), Government of India, New Delhi, Project ID: EEQ/2018/001076 for sponsoring the work. The authors would like to thank all the fishermen community of Dankuni Wetlands for their cooperation during the field visits. The authors also thank the Institutional Clinical Ethics Committee of University for providing the Ethical clearance of the work (Approval No. IEC/BU/2018/03). The authors would like to thank all the other scholars of the Ecology and Environmental Modelling Laboratory for their support during the preparation of the manuscript. The authors would like to thank the anonymous reviewers of the paper for valuable comments to improve the manuscript.

Funding

This study received financial support from the Science and Engineering Research Board (DST-SERB), Government of India, New Delhi, Project EEQ/2018/001076

Author information

Authors and Affiliations

Authors

Contributions

PS and ND- writing, field work; AM- Calculations and model development; SG-calculations and field work; NCS- revision of the manuscript and risk analysis; SM- idea, overall supervision and review, fund acquisition.

Corresponding author

Correspondence to Sudipto Mandal.

Ethics declarations

Ethic Approval

The authors also thank the Institutional Clinical Ethics Committee for providing the Ethical clearance of the work (Approval No. IEC/BU/2018/03).

Consent to Participate

Not applicable

Consent for Publication

All data produced from this study are provided in this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Das, N., Saha, N.C. et al. Modeling of Cadmium Bioaccumulation Dynamics in Channa punctata (Bloch, 1793) of Dankuni Wetland Ecosystem and Assessment of Risk to Human Health. Appl Biochem Biotechnol 195, 3681–3698 (2023). https://doi.org/10.1007/s12010-023-04455-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04455-4

Keywords

Navigation