Skip to main content
Log in

Enhanced Production of Lipstatin Through NTG Treatment of Streptomyces toxytricini KD18 at 5 L Bioreactor Level

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipstatin, natural inhibitor of pancreatic lipase produced by Streptomyces toxytricini and used as an anti-obesity drug. Chemical mutagenesis was performed with different concentrations of N-methyl-N′-nitro-N-nitrosoguanidine (NTG) for strain improvement to obtain high yield of lipstatin. It was observed that the potential of the wild type strain to produce lipstatin (1.09 g/L) was very low. Selected mutants produced lipstatin in the range of 1.20–2.23 g/L at the flask level where maximum amount of lipstatin was produced by M5 mutant. For comparative study, both the parent and M5 mutant strain of S. toxytricini were grown at the lab scale bioreactor with suitable sources of carbon and nitrogen. Significant increase in the production of lipstatin was observed at the bioreactor level where the wild type strain produced 2.4 g/L of lipstatin, while through the NTG mutation, the production of lipstatin was 5.35 g/L. However, Dry Cell Weight (DCW) of the mutant strain was less in comparison with wild type strain and significant morphological differences were observed. Nearly 5 times increase in the production of lipstatin was achieved through NTG mutation and bioreactor-controlled conditions. It was determined that the NTG treatment might be beneficial for strain improvement to get a better candidate for lipstatin production on commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hochuli, E., Kupfer, E., Maurer, R., Meister, W., Mercadal, Y., & Schmidt, K. (1987). Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini II. Chemistry and structure elucidation. The Journal Of Antibiotics, 40(8), 1086–1091.

    Article  PubMed  CAS  Google Scholar 

  2. Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E., & Lengsfeld, H. (1987). Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini I. Producing organism, fermentation, isolation and biological activity. The Journal Of Antibiotics, 40(8), 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  3. Híreš, M., Rapavá, N., Šimkovič, M., Varečka, Ľ., Berkeš, D., & Kryštofová, S. (2018). Development and optimization of a high-throughput screening assay for rapid evaluation of lipstatin production by Streptomyces strains. Current Microbiology, 75(5), 580–587.

    Article  PubMed  Google Scholar 

  4. Bai, T., Zhang, D., Lin, S., Long, Q., Wang, Y., Ou, H., et al. (2014). Operon for biosynthesis of lipstatin, the beta-lactone inhibitor of human pancreatic lipase. Applied And Environmental Microbiology, 80(24), 7473–7483.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yoo, A. N., Demirev, A. V., Lee, J. S., Kim, S. D., & Nam, D. H. (2006). Cloning and analysis of a type II polyketide synthase gene cluster from Streptomyces toxytricini NRRL 15,443. Journal of Microbiology, 44(6), 649–654.

    PubMed  CAS  Google Scholar 

  6. Wackett, L. P. (2017). Microbial β-lactone natural products. Microbial Biotechnology, 10(1), 218–220.

    Article  PubMed  Google Scholar 

  7. Kumar, P., Tripathi, A., Luthra, U., & Dubey, K. K. (2020). Enhanced production of lipstatin from mutant of Streptomyces toxytricini and fed-batch strategies under submerged fermentation. 3 Biotech, 10(4), 151.

    PubMed  PubMed Central  Google Scholar 

  8. Narayanan, M., Kumarasamy, S., Kandasamy, G., Kandasamy, S., Narayanamoorthy, B., Shanmugam, S., et al. (2022). A novel insight into the fabrication of polyhydroxyalkanoates from actinobacteria Streptomyces toxytricini D2: Screening, optimization, and biopolymer characterization. Journal of Polymers and the Environment, 1–14.

  9. Whangchai, K., van Hung, T., Al-Rashed, S., Narayanan, M., Kandasamy, S., & Pugazhendhi, A. (2021). Biodegradation competence of Streptomyces toxytricini D2 isolated from leaves surface of the hybrid cotton crop against β cypermethrin. Chemosphere, 276, 130152.

    Article  PubMed  CAS  Google Scholar 

  10. Luthra, U., Kumar, H., & Dubey, R. C. (2013). Mutagenesis of the lipstatin producer Streptomyces toxytricini ATCC 19813. Journal of Biotechnology Letters, 4(1), 68.

    Google Scholar 

  11. Mote, P. B. (2006). Increased production of antibiotic by mutagenesis from soil isolated actinomycete.

    Google Scholar 

  12. Chandrashekhara, S., Nanjwade, B. K., Goudanavar, P. S., Manvi, F. V., & Ali, M. S. (2010). Isolation and characterization of antibiotic production from soil isolates by fermentation. Research Journal of Pharmaceutical Dosage Forms and Technology, 2(1), 32–36.

    Google Scholar 

  13. Luthra, U., & Dubey, R. C. (2012). Medium optimization of lipstatin from Streptomyces toxytricini ATCC 19813 by shake flask study. International Journal of Microbiology Research, 4(7), 266.

    Article  Google Scholar 

  14. Baltz, R. H. (2001). Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes. Antonie Van Leeuwenhoek, 79(3), 251–259.

    Article  PubMed  CAS  Google Scholar 

  15. Gonzalez, J. B., Fernandez, F. J., & Tomasini, A. (2003). Microbial secondary metabolites production and strain improvement. Indian Journal of Biotechnology, 2(3), 322–333.

    Google Scholar 

  16. Jakhwal, P., Biswas, J. K., Tiwari, A., Kwon, E. E., & Bhatnagar, A. (2022). Genetic and non-genetic tailoring of microalgae for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)–a review. Bioresource Technology, 344, 126250.

    Article  PubMed  CAS  Google Scholar 

  17. Ohnishi, J., Mizoguchi, H., Takeno, S., & Ikeda, M. (2008). Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 649(1–2), 239–244.

    Article  CAS  Google Scholar 

  18. Kumar, P., & Dubey, K. K. (2017). Mycelium transformation of Streptomyces toxytricini into pellet: Role of culture conditions and kinetics. Bioresource Technology, 228, 339–347.

    Article  PubMed  CAS  Google Scholar 

  19. Dutta, S., Basak, B., Bhunia, B., Sinha, A., & Dey, A. (2017). Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology. World Journal of Microbiology and Biotechnology, 33, 1–13.

    Article  CAS  Google Scholar 

  20. Hu, H., Zhou, H., Cheng, G., Xue, Y., Wang, Y., & Zheng, Y. (2020). Improvement of R-2-(4-hydroxyphenoxy) propionic acid biosynthesis of Beauveria bassiana by combined mutagenesis. Biotechnology and Applied Biochemistry, 67(3), 343–353.

    PubMed  CAS  Google Scholar 

  21. Huang, D., Song, Y., Liu, Y., & Qin, Y. (2019). A new strain of Aspergillus tubingensis for high-activity pectinase production. Brazilian Journal of Microbiology, 50, 53–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, B., Zhang, H., Zhou, Y., Huang, K., Liu, Z., & Zheng, Y. (2018). Improvement of amphotericin B production by a newly isolated Streptomyces nodosus mutant. Biotechnology and Applied Biochemistry, 65(2), 188–194.

    Article  PubMed  CAS  Google Scholar 

  23. Singhvi, N., Gupta, V., Dhaka, N., & Dubey, K. K. (2023). Draft genome sequence of Streptomyces sp KD18, isolated from industrial soil. 3 Biotech, 13, 34.

    PubMed  Google Scholar 

  24. Kumar, P., & Dubey, K. K. (2018). Implication of mutagenesis and precursor supplementation towards the enhancement of lipstatin (an antiobesity agent) biosynthesis through submerged fermentation using Streptomyces toxytricini. 3 Biotech, 8(1), 29.

    Article  PubMed  Google Scholar 

  25. Lin, X., Liu, S., Xie, G., Chen, J., Li, P., & Chen, J. (2016). Enhancement of 1, 3-dihydroxyacetone production from Gluconobacter oxydans by combined mutagenesis. Journal of Microbiology and Biotechnology, 26(11), 1908–1917.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, T., Wang, L., Wang, W., Hu, Z., Yu, M., Wang, K., & Cui, Z. (2014). Enhanced production of lipstatin from Streptomyces toxytricini by optimizing fermentation conditions and medium. The Journal Of General And Applied Microbiology, 60(3), 106–111.

    Article  PubMed  CAS  Google Scholar 

  27. Chu, S., Hu, W., Zhang, K., & Hui, F. (2022). Breeding of high daptomycin-producing strain by streptomycin resistance superposition. Polish Journal of Microbiology, 71(3), 463–471.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S., & Ochi, K. (2007). Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3 (2). Journal of bacteriology, 189(10), 3876–3883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qi, H., Zhao, S., Fu, H., Wen, J., & Jia, X. (2014). Coupled cell morphology investigation and metabolomics analysis improves rapamycin production in Streptomyces hygroscopicus. Biochemical engineering journal, 91, 186–195.

    Article  CAS  Google Scholar 

  30. Kumar, A., Gupta, R., Shrivastava, B., Khasa, Y. P., & Kuhad, R. C. (2012). Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. Journal of Molecular Catalysis B: Enzymatic, 74(3–4), 170–177.

    Article  CAS  Google Scholar 

  31. Zacchetti, B., Smits, P., & Claessen, D. (2018). Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans. Frontiers in Microbiology, 9, 943.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang, K., Zhang, B., Chen, Y., Liu, Z.-Q., & Zheng, Y.-G. (2021). Comparative transcriptome analysis of Streptomyces nodosus mutant with a high-yield amphotericin B. Frontiers in Bioengineering and Biotechnology, 8, 621431.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qattan, S. Y. A., & Khattab, A. A. (2019). Molecular characterization of Streptomyces albogriseolus excellent mutants for neomycin production. Journal of Pure and Applied Microbiology, 13(3), 1489–1499.

    Article  CAS  Google Scholar 

  34. Cheng, Y. R., Huang, J., Qiang, H., & LIN, W. E. N. L., & Demain, A. L. (2001). Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904. The Journal of antibiotics, 54(11), 967–972.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu, Z., Chen, W., Zhou, H., Cheng, H., Luo, S., Zhou, K., et al. (2022). ARTP and NTG compound mutations improved Cry protein production and virulence of Bacillus thuringiensis X023. Applied Microbiology and Biotechnology, 106(11), 4211–4221.

    Article  PubMed  CAS  Google Scholar 

  36. Jatain, I., Yadav, K., Nitharwal, R. G., Arora, D., & Dubey, K. K. (2022). A system biology approach for engineering non-oxidative glycolysis pathway in Streptomyces toxytricini for high lipstatin biosynthesis. Bioresource Technology Reports, 19, 101188.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Central University of Haryana, Mahendergarh for the necessary facilities.

Funding

The work was supported by funding from BIRAC-DBT (BT/AIR0296/PACE-12/17) to K.D.

Author information

Authors and Affiliations

Authors

Contributions

K. and K. D. designed the experiments. K. performed the experiments. K. D. analysed the data. K. wrote the manuscript. K.D. read and approved the final manuscript.

Corresponding author

Correspondence to Kashyap Kumar Dubey.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khushboo, Dubey, K.K. Enhanced Production of Lipstatin Through NTG Treatment of Streptomyces toxytricini KD18 at 5 L Bioreactor Level. Appl Biochem Biotechnol 195, 6881–6892 (2023). https://doi.org/10.1007/s12010-023-04442-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04442-9

Keywords

Navigation