Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles Using Salvadora persica and Caccinia macranthera Extracts: Cytotoxicity Analysis and Antimicrobial Activity Against Antibiotic-Resistant Bacteria

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have gained great interest because of their specific and distinct properties. Chemically synthesized AgNPs (cAgNPs) are often unsuitable for medical applications due to requiring toxic and hazardous solvents. Thus, green synthesis of AgNPs (gAgNPs) using safe and nontoxic substances has attracted particular focus. The current study investigated the potential of Salvadora persica and Caccinia macranthera extracts in the synthesis of CmNPs and SpNPs, respectively. Aqueous extracts of Salvadora persica and Caccinia macranthera were prepared and taken as reducing and stabilizing agents through gAgNPs synthesis. The antimicrobial effects of gAgNPs against susceptible and antibiotic-resistant bacterial strains and their toxicity effects on L929 fibroblast normal cells were evaluated. TEM images and particle size distribution analysis showed that the CmNPs and SpNPs have average sizes of 14.8 nm and 39.4 nm, respectively. The XRD confirms the crystalline nature and purity of both CmNPs and SpNPs. FTIR results demonstrate the involvement of the biologically active substances of both plant extracts in the green synthesis of AgNPs. According to MIC and MBC results, higher antimicrobial effects were seen for CmNPs with a smaller size than SpNPs. In addition, CmNPs and SpNPs were much less cytotoxic when examined against a normal cell relative to cAgNPs. Based on high efficacy in controlling antibiotic-resistant pathogens without detrimental adverse effects, CmNPs may have the capacity to be used in medicine as imaging, drug carrier, and antibacterial and anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7, 17–28.

    CAS  PubMed  Google Scholar 

  2. Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. J. J. O. A. R. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. 7, 17–28.

  3. Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272–284.

    CAS  PubMed  Google Scholar 

  4. Ahmed, S., Chaudhry, S. A., Ikram, S. J. J. O. P. & Biology, P. B. (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. 166, 272–284.

  5. Akhtar, M. S., Panwar, J., & Yun, Y.-S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1, 591–602.

    CAS  Google Scholar 

  6. Akhtar, M. S., Panwar, J., Yun, Y.-S. J. A. S. C. & Engineering. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. 1, 591-602.

  7. Akter, S., & Huq, M. A. (2020). Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 48, 672–682.

    CAS  PubMed  Google Scholar 

  8. Akter, S., Huq, M. A. J. A. C., Nanomedicine, & Biotechnology. (2020). Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. 48, 672–682.

  9. Akter, S., Lee, S.-Y., Siddiqi, M. Z., Balusamy, S. R., Ashrafudoulla, M., Rupa, E. J. & Huq, M. A. J. I. j. O. M. S. (2020). Ecofriendly synthesis of silver nanoparticles by Terrabacter humi sp. nov. and their antibacterial application against antibiotic-resistant pathogens. 21, 9746.

  10. Amiri, M. S., & Joharchi, M. R. (2013). Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna Journal of Phytomedicine, 3, 254.

    PubMed  PubMed Central  Google Scholar 

  11. Arora, M., & Gupta, V. K. (2011). Phytochemical ad biological studies on Salvadora persica wall: A review. Pharmacologyonline, 1, 591–601.

    Google Scholar 

  12. Arshad, H., Sami, M. A., Sadaf, S., & Hassan, U. (2021). Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Scientific reports, 11, 1–11.

    Google Scholar 

  13. Asl, M. B., Talebpour, A.-H., & Alijanpour, R. (2012). Introducing of medicinal plants in Maragheh, Eastern Azerbaijan province (northwestern Iran). Journal of Medicinal Plants Research, 6, 4208–4220.

    Google Scholar 

  14. Bone, K. (2005). Phytotherapy for periodontal disease and improved oral hygiene. Townsend letter for Doctors and Patients 38–41.

  15. Chaloupka, K., Malam, Y. & Seifalian, A. M. J. T. I. B. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. 28, 580–588.

  16. Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel Switzerland), 15, 7313–7352.

    CAS  PubMed  Google Scholar 

  17. Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K. & Kim, B. S. J. C. (2021) Green synthesis of metallic nanoparticles: applications and limitations. 11, 902.

  18. Farhadi, L., Mohtashami, M., Saeidi, J., Azimi-nezhad, M., Taheri, G., Khojasteh-Taheri, R., Rezagholizade-Shirvan, A., Shamloo, E., & Ghasemi, A. (2022). Green synthesis of chitosan-coated silver nanoparticle, characterization, antimicrobial activities, and cytotoxicity analysis in cancerous and normal cell lines. Journal of Inorganic and Organometallic Polymers and Materials, 32, 1637–1649.

    CAS  Google Scholar 

  19. Farhadi, L., Mohtashami, M., Saeidi, J., Azimi-nezhad, M., Taheri, G., Khojasteh-Taheri, R., Rezagholizade-Shirvan, A., Shamloo, E., Ghasemi, A. J. J. o. I., Polymers, O. & Materials. (2022). Green synthesis of chitosan-coated silver nanoparticle, characterization, antimicrobial activities, and cytotoxicity analysis in cancerous and normal cell lines. 32, 1637–1649.

  20. Galati, G., & O’brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, 37, 287–303.

    CAS  PubMed  Google Scholar 

  21. Ghorbani, A., Mosaddegh, M. & Naghibi, F. (2010). Ethnobotanical and ethnopharmaceutical study of Tturkmens of Golestan and Khorasan provinces, north of Iran. Iranian Journal of Pharmaceutical Research, 20–20.

  22. Gulsonbi, M., Parthasarathy, S., Raj, K. B., & Jaisankar, V. (2016). Green synthesis, characterization and drug delivery applications of a novel silver/carboxymethylcellulose–poly (acrylamide) hydrogel nanocomposite. Ecotoxicology and Environmental Safety, 134, 421–426.

    CAS  PubMed  Google Scholar 

  23. Hou, P. F., Chen, X. Y., Yan, G. F., Wang, Y. P., & Ying, C. M. (2012). Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of Acinetobacter baumannii. Chemotherapy, 58, 152–158.

    CAS  PubMed  Google Scholar 

  24. Hsueh, P.-R., Ko, W.-C., Wu, J.-J., Lu, J.-J., Wang, F.-D., Wu, H.-Y., Wu, T.-L., & Teng, L.-J. (2010). Consensus statement on the adherence to Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Guidelines (CLSI-2010 and CLSI-2010-update) for Enterobacteriaceae in clinical microbiology laboratories in Taiwan. Journal of Microbiology, Immunology and Infection, 43, 452–455.

    Google Scholar 

  25. Hu, X., & Chan, C. (2004). Photonic crystals with silver nanowires as a near-infrared superlens. Applied Physics Letters, 85, 1520–1522.

    CAS  Google Scholar 

  26. Huang, K.-J., Liu, Y.-J., Wang, H.-B., & Wang, Y.-Y. (2014). A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@ graphene composite. Electrochimica Acta, 118, 130–137.

    CAS  Google Scholar 

  27. Huq, M. A. & Akter, S. J. M. (2021). Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms. 14, 2615.

  28. Huq, M. A. J. F. I. B. & Biotechnology. (2020). Biogenic silver nanoparticles synthesized by Lysinibacillus xylanilyticus mahuq-40 to control antibiotic-resistant human pathogens vibrio parahaemolyticus and Salmonella typhimurium. 8, 597502.

  29. Kannan, N., Selvaraj, S., & Murty, R. V. (2010). Microbial production of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 5, 135–140.

    Google Scholar 

  30. Khan, M., Al-Marri, A. H., Khan, M., Shaik, M. R., Mohri, N., Adil, S. F., Kuniyil, M., Alkhathlan, H. Z., Al-Warthan, A., & Tremel, W. (2015). Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Research Letters, 10, 1–9.

    Google Scholar 

  31. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M. & Mozafari, M. J. I. J. O. N. (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. 13, 8013.

  33. Mahdi, M. A., Yousefi, S. R., Jasim, L. S. & Salavati-Niasari, M. J. I. J. O. H. E. (2022). Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. 47, 14319–14330.

  34. Manikandan, R., Manikandan, B., Raman, T., Arunagirinathan, K., Prabhu, N. M., Basu, M. J., Perumal, M., Palanisamy, S., & Munusamy, A. (2015). Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 120–129.

    CAS  PubMed  Google Scholar 

  35. Mariod, A. A., Matthäus, B., & Hussein, I. (2009). Chemical characterization of the seed and antioxidant activity of various parts of Salvadora persica. Journal of the American Oil Chemists’ Society, 86, 857–865.

    CAS  Google Scholar 

  36. Mashwani, Z.-U.-R., Khan, T., Khan, M. A., & Nadhman, A. (2015). Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Applied Microbiology and Biotechnology, 99, 9923–9934.

    CAS  PubMed  Google Scholar 

  37. Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. (2015). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5, 875–880.

    CAS  Google Scholar 

  38. Miri, A., Dorani, N., Darroudi, M., & Sarani, M. (2016). Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Cellular and Molecular Biology, 62, 46–50.

    CAS  PubMed  Google Scholar 

  39. Miri, A., Sarani, M., Bazaz, M. R., & Darroudi, M. (2015). Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 141, 287–291.

    CAS  PubMed  Google Scholar 

  40. Mohamed, A. A., Fouda, A., Abdel-Rahman, M. A., Hassan, S.E.-D., El-Gamal, M. S., Salem, S. S., & Shaheen, T. I. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 19, 101103.

    Google Scholar 

  41. Mosae Selvakumar, P., Antonyraj, C. A., Babu, R., Dakhsinamurthy, A., Manikandan, N., & Palanivel, A. (2016). Green synthesis and antimicrobial activity of monodispersed silver nanoparticles synthesized using lemon extract. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46, 291–294.

    CAS  Google Scholar 

  42. Mousavi, B., Tafvizi, F., & Zaker Bostanabad, S. (2018). Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artificial cells, Nanomedicine, and Biotechnology, 46, 499–510.

    CAS  PubMed  Google Scholar 

  43. Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dyčka, F., Šebela, M., Prucek, R., & Tomanec, O. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13, 65–71.

    PubMed  Google Scholar 

  44. Patil, M. P., & Kim, G.-D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, 101, 79–92.

    CAS  PubMed  Google Scholar 

  45. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 1–10.

    Google Scholar 

  46. Rajan, A., Vilas, V., & Philip, D. (2015). Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut. Journal of Molecular Liquids, 207, 231–236.

    CAS  Google Scholar 

  47. Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43, 1501–1518.

    CAS  PubMed  Google Scholar 

  48. Routsi, C., Gkoufa, A., Arvaniti, K., Kokkoris, S., Tourtoglou, A., Theodorou, V., Vemvetsou, A., Kassianidis, G., Amerikanou, A., & Paramythiotou, E. (2020). De-escalation of antimicrobial therapy in ICU settings with high prevalence of multidrug-resistant bacteria: A multicentre prospective observational cohort study in patients with sepsis or septic shock. Journal of Antimicrobial Chemotherapy, 75, 3665–3674.

    CAS  PubMed  Google Scholar 

  49. Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9, 2673–2702.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saeidi, J., Dolatabadi, S., Esfahani, M. B., Saeidi, M., Mohtashami, M., Mokhtari, K., & Ghasemi, A. (2021). Anticancer potential of doxorubicin in combination with green-synthesized silver nanoparticle and its cytotoxicity effects on cardio-myoblast normal cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 21, 1842–1849.

    CAS  Google Scholar 

  51. Sahranavard, S., Naghibi, F., Mosaddegh, M., Esmaeili, S., Sarkhail, P., Taghvaei, M., & Ghafari, S. (2009). Cytotoxic activities of selected medicinal plants from Iran and phytochemical evaluation of the most potent extract. Research in Pharmaceutical Sciences, 4, 133.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Salari, S., Neamati, A., Tabrizi, M. H., & Seyedi, S. M. R. (2020). Green-synthesized zinc oxide nanoparticle, an efficient safe anticancer compound for human breast MCF7 cancer cells. Applied Organometallic Chemistry, 34, e5417.

    CAS  Google Scholar 

  53. Shameli, K., Ahmad, M. B., Jazayeri, S. D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., & Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal, 6, 1–10.

    Google Scholar 

  54. Singh, H., Du, J., & Yi, T.-H. (2017). Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: Anticancer and antibacterial activities. Artificial cells, Nanomedicine, and Biotechnology, 45, 1310–1316.

    CAS  PubMed  Google Scholar 

  55. Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 588–599.

    CAS  PubMed  Google Scholar 

  56. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-micro letters, 7, 219–242.

    CAS  PubMed  Google Scholar 

  57. Sriranjani, R., Srinithya, B., Vellingiri, V., Brindha, P., Anthony, S. P., Sivasubramanian, A., & Muthuraman, M. S. (2016). Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. Journal of Molecular Liquids, 220, 926–930.

    CAS  Google Scholar 

  58. Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z., & Yu, C.-P. (2014). Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and surfaces A: Physicochemical and Engineering Aspects, 444, 226–231.

    CAS  Google Scholar 

  59. Tan, L. Y., Sin, L. T., Bee, S. T., Ratnam, C. T., Woo, K. K., Tee, T. T., & Rahmat, A. R. (2019). A review of antimicrobial fabric containing nanostructures metal-based compound. Journal of Vinyl and Additive Technology, 25, E3–E27.

    CAS  Google Scholar 

  60. Tan, L. Y., Sin, L. T., Bee, S. T., Ratnam, C. T., Woo, K. K., Tee, T. T., Rahmat, A. R. J. J. O. V. & Technology, A. (2019). A review of antimicrobial fabric containing nanostructures metal-based compound. 25, E3-E27.

  61. Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials, 7, 1701503.

    Google Scholar 

  62. Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research, 49, 4373–4384.

    CAS  PubMed  Google Scholar 

  63. Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11, 2804–2837.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B. & Rokhum, S. L. J. R. A. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. 11, 2804–2837.

  65. Veerakumar, K., Govindarajan, M., Rajeswary, M., & Muthukumaran, U. (2014). RETRACTED ARTICLE: Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 113, 2363–2373.

    PubMed  Google Scholar 

  66. Xia, Z.-K., Ma, Q.-H., Li, S.-Y., Zhang, D.-Q., Cong, L., Tian, Y.-L., & Yang, R.-Y. (2016). The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, 49, 182–188.

    CAS  Google Scholar 

  67. Xu, L., Yi-Yi, W., Huang, J., Chun-Yuan, C., Zhen-Xing, W. & Xie, H. J. T. (2020). Silver nanoparticles: synthesis, medical applications and biosafety. 10, 8996.

  68. Yousefi, S. R., Amiri, O. & Salavati-Niasari, M. J. U. S. (2019). Control sonochemical parameter to prepare pure Zn0. 35Fe2. 65O4 nanostructures and study their photocatalytic activity. 58, 104619.

  69. Yousefi, S. R., Ghanbari, D., Salavati-Niasari, M. & Hassanpour, M. J. J. O. M. S. M. I. E. (2016). Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH) 2 and Ni/NiO magnetic nanocomposites. 27, 1244–1253.

  70. Yousefi, S. R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh-Oghaz, M. & Salavati-Niasari, M. J. J. O. T. A. C. S. (2021). Dy2BaCuO5/Ba4DyCu3O9. 09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. 104, 2952–2965.

  71. Yousefi, S. R., Sobhani, A., Alshamsi, H. A. & Salavati-Niasari, M. J. R. A. (2021). Green sonochemical synthesis of BaDy 2 NiO 5/Dy 2 O 3 and BaDy 2 NiO 5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. 11, 11500–11512.

  72. Yousefi, S. R., Sobhani, A. & Salavati-Niasari, M. J. A. P. T. (2017). A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. 28, 1258–1262.

  73. Zhang, S., Tang, Y., & Vlahovic, B. (2016). A review on preparation and applications of silver-containing nanofibers. Nanoscale Research letters, 11, 1–8.

    Google Scholar 

Download references

Acknowledgements

This article was part of the M.Sc. thesis of Roshanak Khojasteh-Taheri performed at the Islamic Azad University of Neyshabur. The authors would like to thank the staff at Islamic Azad University of Neyshabur, the Neyshabur University of Medical Sciences and the Neyshabur University of Medical Sciences for their sincere assistance and efforts to make this project happen.

Author information

Authors and Affiliations

Authors

Contributions

R.K.T performed the experiments and drafted the manuscript. A. G analyzed data, prepared the figures, and drafted the manuscript. Z.M and Z.S designed the project and experiments and helped draft the manuscript. M. D and M.M conceived, designed, and supervised all aspects of the work, and critically reviewed and edited the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mahnaz Mohtashami or Majid Darroudi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khojasteh-Taheri, R., Ghasemi, A., Meshkat, Z. et al. Green Synthesis of Silver Nanoparticles Using Salvadora persica and Caccinia macranthera Extracts: Cytotoxicity Analysis and Antimicrobial Activity Against Antibiotic-Resistant Bacteria. Appl Biochem Biotechnol 195, 5120–5135 (2023). https://doi.org/10.1007/s12010-023-04407-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04407-y

Keywords

Navigation