Skip to main content

Advertisement

Log in

Wound Healing Potential of Couroupita guianensis Aubl. Fruit Pulp Investigated on Excision Wound Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wound care management aims at stimulating and improving healing process without scar formation. Although various plants have been reported to possess wound healing properties in tribal and folklore medicines, there is a lack of scientific data to validate the claim. In this aspect, it becomes inevitable to prove the efficacy of naturally derived products at pharmacological levels. Couroupita guianensis as a whole plant has been reported to exhibit wound healing activity. The leaves and fruit of this plant have been utilized in folkloric medicine to cure skin diseases and infections for many years. However, to the best of our knowledge, no scientific studies have been conducted to verify the wound healing properties of C. guianensis fruit pulp. Therefore, the present study seeks to investigate the wound healing potential of C. guianensis fruit pulp using an excision wound model in Wistar albino male rats. This study indicated that the ointment prepared from crude ethanolic extract of C. guianensis fruit pulp facilitated wound contraction that were evidenced by a greater reduction in the wound area and epithelialization period and increased hydroxyproline content. The experimental groups treated with low and mid dose of C. guianensis ethanol extract (CGEE) ointments had shown a wound closure of 80.27% and 89.11% respectively within 15 days, which is comparable to the standard betadine ointment which showed 91.44% healing in the treated groups. Further, the extract influenced the expression of genes VEGF and TGF-β on post wounding days that clearly explained the strong correlation between these genes and wound healing in the experimental rats. The animals treated with 10% CGEE ointment showed a significant upregulation of both VEGF and TGF-β as compared with other test and standard groups. These findings provide credence to the conventional application of this plant in the healing of wounds and other dermatological conditions, and may represent a therapeutic strategy for the treatment of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Strodtbeck, F. (2001). Physiology of wound healing. Newborn and Infant Nursing Reviews, 1(1), 43–52.

    Article  Google Scholar 

  2. Remoue, N., Bonod, C., Fromy, B., & Sigaudo-Roussel, D. (2020). Animal models in chronic wound healing research. Innovations and Emerging Technologies in Wound Care, 197–224. https://doi.org/10.1016/b978-0-12-815028-3.00012

  3. Velnar, T., Bailey, T., & Smrkolj. (2009). The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37, 1528. https://doi.org/10.1177/147323000903700531

    Article  PubMed  CAS  Google Scholar 

  4. Karthick, K. G., Miraftab, M., & Ashton, J. (2010), in Medical and Healthcare Textiles: Development of a decision support system for determination of suitable dressings for wounds (Anand, S. C., Kennedy, J. F., Miraftab, M. & Rajendran, S., eds.), Woodhead Publishing, pp. 215–225. https://doi.org/10.1533/97808570 90348.215

  5. Turner., & Badylak, S. F. (2011), Advanced Wound Repair Therapies: Engineered tissues for wound repair (David, F. ed.), Woodhead Publishing, pp. 463–494. https://doi.org/10.1533/9780857093301.4.463

  6. Pereira, R. F., & Bartolo, P. J. (2013). Traditional therapies for skin wound healing. Advances in wound care, 5(5). https://doi.org/10.1089/wound.2013.0506

  7. Sheba, L. A., & Anuradha, V. (2020). An updated review on Couroupita guianensis Aubl. Journal of Herbmed Pharmacology, 9, 1–11. https://doi.org/10.15171/jhp.2020.01

    Article  CAS  Google Scholar 

  8. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants604004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts. Journal Pharmacogn Phytochem., 6, 32–36.

    CAS  Google Scholar 

  10. Demirbolat, G. M., & Demirel, A. (2021). The role of ointment base on stability of dexketoprofen trometamol in ointments. Journal Research Pharmaceutical, 25(5), 681–688.

    CAS  Google Scholar 

  11. Hadi, I. A., Ugrine, H. E., Farouk, A. M., & Shayoub, M. (1989). Formulation of polyethylene glycol ointment bases suitable for tropical and subtropical climates I. Acta Pharmaceutical Hungarica, 59(3), 137–142.

    CAS  Google Scholar 

  12. Morton, J. J., & Malone, M. H. (1972). Evaluation of vulnerable activity by open wound procedure in rats. Archives Internationales de Pharmacodynamie et de Therapie, 196(1), 117–126.

    PubMed  CAS  Google Scholar 

  13. Kokane, D. D., More, R. Y., Kale, M. B., Nehete, M. N., Mehendale, P. C., & Gadgoli, C. H. (2009). Evaluation of wound healing activity of root of Mimosa pudica. Journal of Ethnopharmacology, 124, 311–315.

    Article  PubMed  Google Scholar 

  14. Pawar, R. S., Chaurasiya, P. K., Rajak, H., Singour, P. K., Toppo, F. A., & Jain, A. (2013). Wound healing activity of Sida cordifolia Linn in rats. Indian Journal of Pharmacology, 45, 474.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kafel, A., Babczyńska, A., Zawisza-Raszka, A., Tarnawska, M., Płachetka-Bożek, A., & Augustyniak, M. (2021). Energy reserves, oxidative stress and development traits of Spodoptera exigua Hubner individuals from cadmium strain. Environmental Pollution, 268, 115366. https://doi.org/10.1016/j.envpol.2020.115366

    Article  PubMed  CAS  Google Scholar 

  16. Aebi, H. (1984). Catalase. Methods in Enzymology, 105, 121–126.

    Article  PubMed  CAS  Google Scholar 

  17. Murthy, S., Gautam, M. K., Goel, S., Purohit, V., Sharma, H., & Goel, R. K. (2013). Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. BioMed Research International, ,1 – 9.

  18. Reddy, G. K., & Enwemeka, C. S. (1996). A simplified method for the analysis of hydroxyproline in biological tissues. Clinical Biochemistry, 29(3), 225–229. https://doi.org/10.1016/0009-9120(96)00003-6

    Article  PubMed  CAS  Google Scholar 

  19. Ray, S., Roy, K., & Sengupta, C. (2007). In vitro evaluation of antiperoxidative potential of water extract of Spirulina platensis (blue green algae) on cyclophosphamide-induced lipid peroxidation. Indian Journal of Pharmaceutical Sciences, 69(2), 190–196.

    Article  Google Scholar 

  20. Roghaye, S., Mohammad, S. I., Hamid, G., & Mahnaz, K. (2019). Expression of VEGF and TGF-β genes in skin wound healing process induced using phenytoin in male rats. Jundishapur Journal of Health Sciences, 11(1), e86041.

    Google Scholar 

  21. Boakye, Y. D., Agyare, C., Ayande, G. P., Titiloye, N., Asiamah, E. A., & Danquah, K. O. (2018). Assessment of wound-healing properties of medicinal plants: The case of Phyllanthus muellerianus. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00945

  22. Umachigi, S. P., Jayaveera, K., Ashok, K. C., & Kumar, G. S. (2007). Antimicrobial, wound healing and antioxidant potential of Couroupita guianensis in rats. Pharmacologyonline, 3, 269–281.

    Google Scholar 

  23. Shrivastav, A., Mishra, A. K., Ali, S. S., Ahmad, A., Abuzinadah, M. F., & Khan, N. A. (2018). In vivo models for assesment of wound healing potential: A systematic review. Wound Medicine, 20, 43–53. https://doi.org/10.1016/j.wndm.2018.01.003

    Article  Google Scholar 

  24. Nauta, A. C., Gurtner, G. C., Longaker., & M. T. (2013), in Wound Regeneration and Repair Methods and Protocols: Adult stem cells in small animal wound healing models (Gourdie R. G., & Myers T. A. eds.), Humana Press, New York, NY, pp. 81–98.

  25. Seaton, M., Hocking, A., & Gibran, N. S. (2015). Porcine models of cutaneous wound healing. Institute for Laboratory Animal Research Journal, 56(1), 127e38.

    Google Scholar 

  26. Masson-Meyers, D. S., Andrade, T., Caetano, G. F., Guimaraes, F. R., Leite, M. N., Leite, S. N., & Frade, M. (2020). Experimental models and methods for cutaneous wound healing assessment. International Journal of Experimental Pathology, 101(1–2), 21–37. https://doi.org/10.1111/iep.12346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Getie, M., Gebre-Mariam T., Rietz, R., Hohne, C., Huschka, C., Schmidtke, M., Abate, A., & Neubert R. H. H. (2003). Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicusFitoterapia,

  28. Agarwal, P. K., Singh, A., Gaurav, K., Goel, S., Khanna, H. D., & Goel, R. K. (2009). Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats. Indian Journal of Experimental Biology, 47, 32–40.

    PubMed  CAS  Google Scholar 

  29. Nayak, B. S., Raju, S. S., Eversley, M., & Ramsubhag, A. (2009). Evaluation of wound healing activity of Lantana camara L: A preclinical study. Phytotherapy Research, 23, 241–245.

    Article  PubMed  Google Scholar 

  30. Dwivedi, D., Dwivedi, M., Malviya, S., & Singh, V. (2016). Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in Wistar rats. Journal of Traditional and Complementary Medicine, 7(1), 79–85. https://doi.org/10.1016/j.jtcme.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suntar, I. P., Akkol, E. K., & Yilmazer, D. (2010). Investigations on the in-vivo wound healing potential of Hypericum perforatum L. Journal of Ethnopharmacology, 127, 468–477.

    Article  PubMed  Google Scholar 

  32. Honnegowda, T. M., Kumar, P., Udupa, P., Rao, P., Bhandary, S., Mahato, K. K., Sharan, A., & Mayya, S. S. (2014). Effect of limited access dressing on hydroxyproline and enzymatic antioxidant status in nonhealing chronic ulcers. Indian Journal of Plastic Surgery, 47(2), 216–220. https://doi.org/10.4103/0970-0358.138952

    Article  PubMed  PubMed Central  Google Scholar 

  33. Halliwell, B., Grootveld, M., & Gutteridge, J. M. (1988). Methods for the measurement of hydroxyl radicals in biomedical systems: Deoxyribose degradation and aromatic hydroxylation. Methods of Biochemical Analysis, 33, 59–90.

    Article  PubMed  CAS  Google Scholar 

  34. Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25, 9.

    Article  PubMed  CAS  Google Scholar 

  35. Brown, N. J., Smyth, E. A., Cross, S. S., & Reed, M. W. (2002). Angiogenesis induction and regression in human surgical wounds. Wound Repair and Regeneration, 10, 245.

    Article  PubMed  Google Scholar 

  36. Johnson, K. E., & Wilgus, T. A. (2014). Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Advances in Wound Care (New Rochelle), 3(10), 647–661. https://doi.org/10.1089/wound.2013.0517

    Article  PubMed Central  Google Scholar 

  37. Faler, B. J., Macsata, R. A., Plummer, D., Mishra, L., & Sidawy, A. N. (2006). Transforming growth factor-beta and wound healing. Perspectives in Vascular Surgery and Endovascular Therapy, 18(1), 55–62. https://doi.org/10.1177/153100350601800123

    Article  PubMed  Google Scholar 

  38. Kumar, I., Staton, C. A., Cross, S. S., Reed, M. W., & Brown, N. J. (2009). Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 96, 1484–1491. https://doi.org/10.1002/bjs.6778

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anna Sheba L.: conception, strategy, formal analysis and research, writing—first draft preparation, composing, reviewing, and rewriting the manuscript. Anuradha V.: review and editing the manuscript. Syed Ali M.: contributed statistical tools and analyzed the data. Yogananth N.: contributed statistical tools and analyzed the data.

Corresponding author

Correspondence to V Anuradha.

Ethics declarations

Ethics Approval

The animal experiment protocol was approved by the Institute Animal Ethics Committee (IAEC no: LVII/02/321/PO/Re/S/04/CPCSEA).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheba, L.A., Anuradha, V., Ali, M.S. et al. Wound Healing Potential of Couroupita guianensis Aubl. Fruit Pulp Investigated on Excision Wound Model. Appl Biochem Biotechnol 195, 6516–6536 (2023). https://doi.org/10.1007/s12010-023-04400-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04400-5

Keywords

Navigation