Skip to main content
Log in

Evaluation of Pharmacological Potential of Miliusa nilagirica Bedd. Leaves Using In Vitro Antidiabetic and Antioxidant Assays

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Miliusa nilagirica, a rare tree species of Western Ghats, belongs to the Annonaceae family, a family with potential antioxidant and antidiabetic properties. This study is designed vividly to establish the relationship between the constituent phytochemicals and their hyperglycemic effects through the antioxidant traits of M. nilagirica in vitro. Phytochemical tests were conducted on dry powdered leaves and extracts of various methods to determine the existence of various constituents. The antidiabetic potential of leaf extracts was estimated by using the α-amylase inhibitory model and the antioxidant potential was estimated with various assays. The quantitative phytochemical screening of leaf parts shows the presence of carbohydrates (88.74 ± 0.65 mg GE/g sample), proteins (82.17 ± 2.52 mg BSAE/g sample), phenolics (40.44 ± 0.43 GAE/100 g), and flavonoids (66.05 ± 0.48 mg RE/g extract). Methanol extract of Soxhlet of M. nilagirica registered the strongest antioxidant activity in all assays, 75.66% inhibition (DPPH assay), 795.01 µmol/g (ABTS˙+ radical scavenging), 994.33 µmol/g (FRAP assay), 362.02 mg AAE/g extract (TAC assay), 47% inhibition (NO scavenging assay). In vitro α-amylase inhibition showed a highly noticeable reduction in ethyl acetate extract from Soxhlet (75.19%). HPLC and FTIR analyses on the extracts added strengths to the obtained results on the potentiality of M. nilagirica. From the results, it is evident that phytochemicals from M. nilagirica can be studied further, isolated, and incorporated as an alternative to synthetic supplements for hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ABTS:

2,2′-Azinobis (3-ethyl-benzothiazole)-6-sulfonic acid

BSAE:

Bovine serum albumin equivalents

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

TAC:

Total antioxidant capacity

FRAP:

Ferric reducing antioxidant power

NO:

Nitric oxide

EDTA:

Ethylenediaminetetraacetic acid

GAE:

Gallic acid equivalents

GE:

Glucose equivalents

LE:

Leucine equivalents

PVPP:

Polyvinyl polypyrrolidone

RE:

Rutin equivalents

TE:

Trolox equivalents

TPTZ:

2,4,6-Tris (2-pyridyl)-s-triazine

PVDF:

Polyvinylidene fluoride

UV/VIS:

Ultraviolet-visible

References

  1. Adenipekun, C. O., & Oyetunji, O. J. (2010). Nutritional values of some tropical vegetables. Journal of Applied Biosciences, 35, 2294–2300.

    Google Scholar 

  2. Koche, D., Shirsat, R., & Kawale, M. (2016). An overview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia Journal, 9(1/2), 0976–2124.

    Google Scholar 

  3. Shui, G., Wong, S. P., & Leong, L. P. (2004). Characterization of antioxidants and change of antioxidant levels during storage of Manilkara zapota L. Journal of Agricultural and Food Chemistry, 52(26), 7834–7841.

    Article  PubMed  CAS  Google Scholar 

  4. Dembinska-Kiec, A., Mykkänen, O., Kiec-Wilk, B., & Mykkänen, H. (2008). Antioxidant phytochemicals against type 2 diabetes. British Journal of Nutrition, 99(E-S1), ES109–ES117.

    Article  PubMed  Google Scholar 

  5. Rao, M. U., Sreenivasulu, M., Chengaiah, B., Reddy, K. J., & Chetty, C. M. (2010). Herbal medicines for diabetes mellitus: A review. International Journal of PharmTech Research, 2(3), 1883–1892.

    Google Scholar 

  6. Favaz, P., Thomas, P. A., Parambi, D. T., Anil, K. B., Baby, A., & Rajan, N. (2014). Histological evaluation, antioxidant and cytotoxic studies of Miliusa wayanadica. IOSR Journal of Pharmacy and Biological Sciences, 9(5), 50–60.

    Article  Google Scholar 

  7. Ninh The Son. (2019). Secondary metabolites of genus Pandanus: An aspect of phytochemistry. Mini-Reviews in Organic Chemistry, 16(7), 689–710.

    Article  Google Scholar 

  8. Jumana, S., Hasan, C. M., & Rashid, M. A. (2000). Antibacterial activity and cytotoxicity of Miliusa velutina. Fitoterapia, 71(5), 559–561.

    Article  PubMed  CAS  Google Scholar 

  9. Promchai, T., Jaidee, A., Cheenpracha, S., Trisuwan, K., Rattanajak, R., Kamchonwongpaisan, S., ... & Ritthiwigrom, T. (2016). Antimalarial oxoprotoberberine alkaloids from the leaves of Miliusa cuneata. Journal of Natural Products, 79(4), 978–983. https://doi.org/10.1021/acs.jnatprod.5b01054

  10. Sawasdee, K., Chaowasku, T., Lipipun, V., Dufat, T. H., Michel, S., & Likhitwitayawuid, K. (2013). New neolignans and a lignan from Miliusa fragrans, and their anti-herpetic and cytotoxic activities. Tetrahedron Letters, 54(32), 4259–4263.

    Article  CAS  Google Scholar 

  11. Thao, N. P., Luyen, B. T. T., Tai, B. H., Cuong, N. M., Kim, Y. C., Van Minh, C., & Kim, Y. H. (2015). Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorganic & Medicinal Chemistry Letters, 25(18), 3859–3863.

    Article  CAS  Google Scholar 

  12. Xu, X. Y., Tsang, S. W., Guan, Y. F., Liu, K. L., Pan, W. H., Lam, C. S., ... & Zhang, H. J. (2019). In vitro and in vivo antitumor effects of plant-derived miliusanes and their induction of cellular senescence. Journal of Medicinal Chemistry, 62(3), 1541–1561. https://doi.org/10.1016/j.bmcl.2015.07.056

  13. Lee, W. J., Moon, J. S., Kim, Y. T., Hai, D. V., & Kim, S. U. (2016). Inhibition of the calcineurin pathway by two flavonoids isolated from Miliusa sinensis Finet & Gagnep. Journal of Microbiology and Biotechnology, 26(10), 1696–1700.

    Article  PubMed  CAS  Google Scholar 

  14. Parimelazhagan, T. (2015). Pharmacological assays of plant-based natural products (Vol. 71). Springer.

  15. Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. (2019). Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats. India. Food Science and Human Wellness, 8(1), 73–81.

    Article  Google Scholar 

  16. Murugan, R., Prabu, J., Chandran, R., Sajeesh, T., Iniyavan, M., & Parimelazhagan, T. (2016). Nutritional composition, in vitro antioxidant and anti-diabetic potentials of Breynia retusa (Dennst.) Alston. Food Science and Human Wellness, 5(1), 30–38.

    Article  Google Scholar 

  17. Sathyanarayanan, S., Muniyandi, K., George, E., Sivaraj, D., Sasidharan, S. P., & Thangaraj, P. (2017). Chemical profiling of Pterolobium hexapetalum leaves by HPLC analysis and its productive wound healing activities in rats. Biomedicine & Pharmacotherapy, 95, 287–297.

    Article  CAS  Google Scholar 

  18. Chaowasku, T., & Keßler, P. J. (2014). Miliusa cambodgensis sp. nov.(Annonaceae) from Cambodia and M. astiana, M. ninhbinhensis spp. nov. from Vietnam. Nordic Journal of Botany, 32(3), 298–307.

    Article  Google Scholar 

  19. Glevitzky, I., Dumitrel, G. A., Glevitzky, M., Pasca, B., Otrisal, P., Bungau, S., ... & Popa, M. (2019). Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Revista de Chimie, 70(9), 3103–3107.

  20. Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Sciences, 58(2), 173–181.

    Article  Google Scholar 

  21. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), 96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Proença, C., Freitas, M., Ribeiro, D., Tomé, S. M., Oliveira, E. F., Viegas, M. F., ... & Fernandes, E. (2019). Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity relationship. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 577–588. https://doi.org/10.1080/14756366.2018.1558221

  23. Adefegha, S. A., & Oboh, G. (2012). Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Pharmaceutical Biology, 50(7), 857–865.

    Article  PubMed  CAS  Google Scholar 

  24. de Sousa, E., Zanatta, L., Seifriz, I., Creczynski-Pasa, T. B., Pizzolatti, M. G., Szpoganicz, B., & Silva, F. R. M. B. (2004). Hypoglycemic effect and antioxidant potential of kaempferol-3, 7-O-(α)-dirhamnoside from Bauhinia f orficata leaves. Journal of Natural Products, 67(5), 829–832.

    Article  PubMed  Google Scholar 

  25. Hanamura, T., Hagiwara, T., & Kawagishi, H. (2005). Structural and functional characterization of polyphenols isolated from acerola (Malpighia emarginata DC.) fruit. Bioscience, Biotechnology, and Biochemistry, 69(2), 280–286.

    Article  PubMed  CAS  Google Scholar 

  26. Mbhele, N., Balogun, F. O., Kazeem, M. I., & Ashafa, T. (2015). In vitro studies on the antimicrobial, antioxidant and antidiabetic potential of Cephalaria gigantea. Bangladesh Journal of Pharmacology, 10(1), 214–221.

    Article  Google Scholar 

Download references

Acknowledgements

The authors fervently thank the funding support from DST-FIST & UGC- SAP conferred to the Department of Botany, Bharathiar University, Coimbatore.

Funding

This work was supported by DST-FIST program, Bharathiar University, Coimbatore.

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design, material preparation, data collection, and analysis were performed by Francis Jegan Raj, Gayathri Jagadeesan, and Benedict Mathews. The first draft of the manuscript was written by Francis Jegan Raj and Rajan Kilimas reviewed on previous versions of the manuscript. Parimelazhagan Thangaraj edited and approved the final manuscript.

Corresponding authors

Correspondence to Parimelazhagan Thangaraj or Rajan Kilimas.

Ethics declarations

Ethical Approval

This study does not involve the need for ethical approval. The research ethics committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, F.J., Jagadeesan, G., Mathews Paul, B. et al. Evaluation of Pharmacological Potential of Miliusa nilagirica Bedd. Leaves Using In Vitro Antidiabetic and Antioxidant Assays. Appl Biochem Biotechnol 195, 6790–6808 (2023). https://doi.org/10.1007/s12010-023-04396-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04396-y

Keywords

Navigation