Skip to main content
Log in

The Antibacterial and Antibiofilm Activities of the Endophytic Bacteria Associated with Archidendron pauciflorum against Multidrug-Resistant Strains

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytes associated with medicinal plants are a potential source of valuable natural products. This study aimed to evaluate the antibacterial and antibiofilm activities of endophytic bacteria from Archidendron pauciflorum against multidrug-resistant (MDR) strains. A total of 24 endophytic bacteria were isolated from the leaf, root, and stem of A. pauciflorum. Seven isolates showed antibacterial activity with different spectra against four MDR strains. Extracts derived from four selected isolates (1 mg/mL) also displayed antibacterial activity. Among four selected isolates, DJ4 and DJ9 isolates exhibited the strongest antibacterial activity against P. aeruginosa strain M18, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (DJ4 and DJ9 MIC: 7.81 µg/mL; DJ4 and DJ9 MBC: 31.25 µg/mL). 2 × MIC of DJ4 and DJ9 extracts was found to be the most effective concentration to inhibit more than 52% of biofilm formation and eradicate more than 42% of established biofilm against all MDR strains. 16S rRNA-based identification revealed four selected isolates belong to the genus Bacillus. DJ9 isolate possessed nonribosomal peptide synthetase (NRPS) gene, and DJ4 isolate possessed NRPS and polyketide synthase type I (PKS I) gene. Both these genes are commonly responsible for secondary metabolites synthesis. Several antimicrobial compounds, including 1,4-dihydroxy-2-methyl-anthraquinone and paenilamicin A1, were detected in the bacterial extracts. This study highlights endophytic bacteria isolated from A. pauciflorum provide a great source of novel antibacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. World Health Organization. (2020). The top 10 causes of death. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed on August 27, 2021.

  2. Inggraini, M., Nurfajriah, S., Priyanto, J. A., & Ilsan, N. A. (2021). Antimicrobial susceptibility and molecular species identification of clinical carbapenem-resistant bacteria. Biodiversitas., 22(2), 555–562. https://doi.org/10.13057/biodiv/d220206

    Article  Google Scholar 

  3. Bunawan, H., Dusik, L., Bunawan, S. N., & Amin, N. M. (2013). Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: A review. Global Journal of Pharmacology, 7(4), 474–478. https://doi.org/10.5829/idosi.gjp.2013.7.4.824

    Article  CAS  Google Scholar 

  4. Nasution, H. M., Yuniarti, R., Rani, Z., & Nursyafira, A. (2022). Phytochemical screening and antibacterial activity test of ethanol extract of jengkol leaves (Archidendron pauciflorum Benth.) I.C. Nielsen against Staphylococcus epidermidis and Propionibacterium acnes. International Journal of Scientific & Technology Management, 3(3), 647–653. https://doi.org/10.46729/ijstm.v3i3.509

    Article  Google Scholar 

  5. Hidayati, R. A., Kristijono, A., & Muadifah, A. (2021). Antibacterial activity test for gel hand sanitizer of jengkol rind (Archidendron pauciflorum (Benth.) Nielsen) extract against Escherichia coli bacteria. Jurnal Sains dan Kesehatan [Indonesian], 3(2), 165–176.

    Article  Google Scholar 

  6. Anggraini, T., Novendra, V., & Novelina. (2018). Antioxidant activity of Archidendron pauciflorum, Syzygium oleana, Mangifera indica, Theobroma cacao and Cinnamomum burmannii young leaves and their application as jelly drink colourants. Pakistan Journal of Nutrition, 17, 492–499. https://doi.org/10.3923/pjn.2018.492.499

    Article  CAS  Google Scholar 

  7. Sihombing, J. R., Sidabutar, C. A. B. S., Fachrial, E., Almahdy, A., Chaidir, Z., & Dharma, A. (2017). Utilization of fruit peel extracts of Persea mericana, Cyphomandra betacea, Mangifera odorata and Archidendron pauciflorum as antidiabetic in experimental rats. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1), 1407–1410.

    CAS  Google Scholar 

  8. Rahim, A. R., Malini, D. M., & Hermawan, W. (2018). Antihyperlipidemic activity of Archidendron pauciflorum fruit peel extract in streptozotocin-induced diabetes female wistar rats. IOP IOP Conference Series: Earth and Environmental Science, 166(2018), 1–8. https://doi.org/10.1088/1755-1315/166/1/012015

    Article  Google Scholar 

  9. Fouda, A., Eid, A. M., Elsaied, A., El-Belely, E. F., Barghoth, M. G., Azab, E., Gobouri, A. A., & Hassan, S. E. D. (2021). Plant growth promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants, 10(76), 2–22. https://doi.org/10.3390/plants10010076

    Article  CAS  Google Scholar 

  10. Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, L., Ben, C., & Djébali, N. (2021). Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 172(11389), 1–18. https://doi.org/10.1016/j.postharvbio.2020.111389

    Article  CAS  Google Scholar 

  11. Beiranvand, M., Amin, M., Hashemi-Shahraki, A., Romani, B., Yaghoubi, S., & Sadeghi, P. (2017). Antimicrobial activity of endophytic bacterial populations isolated from medical plants of Iran. Iranian Journal of Microbiology, 9(1), 11–18.

    PubMed  PubMed Central  Google Scholar 

  12. Myo, E. M., Maung, C. E. H., Mya, K. M., & Khai, A. A. (2020). Characterization of bacterial endophytes from Myanmar medicinal plants for antimicrobial activity against human and plant pathogens. Brazilian Journal of Pharmaceutical Sciences, 56(e17705), 1–8. https://doi.org/10.1590/s2175-97902019000317705

    Article  CAS  Google Scholar 

  13. Aljuraifani, A., Aldosary, S., & Ababutain, I. (2019). In vitro antimicrobial activity of endophytes, isolated from Moringa peregrina growing in eastern region of Saudi Arabia. National Academy Science Letters, 42(1), 75–80. https://doi.org/10.1007/s40009-018-0739-6

    Article  CAS  Google Scholar 

  14. Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H., & Rai, M. (2015). Endophytic actinobacteria of medicinal plants: Diversity and bioactivity. Antonie van Leeuwenhoek, 108, 267–289. https://doi.org/10.1007/s10482-015-0502-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ding, L., Armin, M., Heinz-Herbert, F., Wen-Han, L., & Christian, H. (2011). A family of multi-cyclic indolosesquiterpenes from a bacterial endophyte. Organic & Biomolecular Chemistry, 9(11), 4029–4031. https://doi.org/10.1039/c1ob05283g

    Article  CAS  Google Scholar 

  16. Castillo, U., Harper, J. K., Strobel, G. A., Sears, J., Alesi, K., Ford, E., Lin, J., Hunter, M., Maranta, M., Ge, H., Yaver, D., Jensen, J. B., Porter, H., Robison, R., Millar, D., Hess, W. M., Condron, M., & Teplow, D. (2003). Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiology Letters, 224(2), 183–190. https://doi.org/10.1016/S0378-1097(03)00426-9

    Article  PubMed  CAS  Google Scholar 

  17. Ezra, D., Castillo, U. F., Strobel, G. A., Hess, W. M., Porter, H., Jensen, J. B., Condron, M. A. M., Teplow, D. B., Sears, J., Maranta, M., Hunter, M., Weber, B., & Yaver, D. (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology., 150(04), 785–793. https://doi.org/10.1099/mic.0.26645-0

    Article  PubMed  CAS  Google Scholar 

  18. Singh, R., Pandey, K. D., Singh, M., Singh, S. K., Hasem, A., Al-ArjaniAbdAllah, A. B. F. E. F., Singh, P. K., & Kumar, A. (2021). Isolation and characterization of endophytes bacterial strains of Momordica charantia L. and their possible approach in stress management. Microorganisms, 10(290), 1–14. https://doi.org/10.3390/microorganisms10020290

    Article  CAS  Google Scholar 

  19. Rini, A. F., Yuhana, M., & Wahyudi, A. T. (2017). Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp. Jurnal Akuakultur Indonesia, 16(1), 41–50. https://doi.org/10.19027/jai.16.1.41-50

    Article  Google Scholar 

  20. Priyanto, J. A., Pujiyanto, S., & Rukmi, I. (2014). Flavonoids production capability test of tea mistletoe (Scurrula atropurpurea BL. Dans) endophytic bacteria isolates. Jurnal Sains dan Matematika, 22(4), 89–96.

    Google Scholar 

  21. Diale, M. O., Aswa, E. U., & Serepa-Dlamini, M. H. (2018). The antibacterial activity of bacterial endophytes isolated from Combretum mole. African Journal of Biotechnology, 17(8), 255–262. https://doi.org/10.5897/AJB2017.16349

    Article  CAS  Google Scholar 

  22. NCCLS (National Committee for Clinical Laboratory Standard). (2020). Performance standard for antimicrobial susceptibility testing. Ninth informational supplement. 30th ed., NCCLS, Malvern, PA, 40 (1), 1–294.

  23. Wintachai, P., Paosen, S., Yupanqui, C. T., & Voravuthikunchai, S. P. (2019). Silver nanoparticles synthesized with Eucalyptus critriodora ethanol leaf extract stimulate antibacterial activity against clinically multidrug-resistant Acinetobacter baumannii isolated from pneumonia patients. Microbial Pathogenesis, 126, 245–257. https://doi.org/10.1016/j.micpath.2018.11.018

    Article  PubMed  CAS  Google Scholar 

  24. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, A. T., Fry, J. C., Hiom, S. J., Dymock, D., & Wade, W. G. (1998). Design and evaluation of useful bacterium specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799. https://doi.org/10.1128/AEM.64.2.795-799.1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ayuso-Sacido, A., & Genilloud, O. (2004). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49, 10–24. https://doi.org/10.1007/s00248-004-0249-6

    Article  PubMed  CAS  Google Scholar 

  26. Schirmer, A., Gadkari, R., Reeves, C. D., Ibrahim, F., DeLong, E. F., & Hutchinson, C. R. (2005). Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissolute. Applied and Environmental Microbiology, 71(8), 4840–4849. https://doi.org/10.1128/AEM.71.8.4840-4849.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Metsä-Ketelä, M., Salo, V., Halo, L., Hautala, A., Hakala, J., Mäntsälä, P., & Ylihonko, K. (1999). An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiology Letters, 180, 1–6. https://doi.org/10.1111/j.1574-6968.1999.tb08770.x

    Article  PubMed  Google Scholar 

  28. Septama, A. W., Tasfiyati, A. N., Kristiana, R., & Jaisi, A. (2022). Chemical profiles of essential oil from Javanese turmeric (Curcuma xanthorrhiza Roxb.): Evaluation of its antibacterial and antibiofilm activities against selected clinical isolates. South+A1443 African Journal of Botany, 146, 728–734. https://doi.org/10.1016/j.sajb.2021.12.017

    Article  CAS  Google Scholar 

  29. Innocenti, G., Dall’Acqua, S., Viola, G., & Loi, M. C. (2006). Cytotoxic constituents from Anagyris foetida leaves. Fitotropia, 77(7), 595–597. https://doi.org/10.1016/j.fitote.2006.06.012

    Article  CAS  Google Scholar 

  30. Ifaya, M., Musfiroh, I., Sahidin, & Susilawati, Y. (2021). Potential antidiabetic activities of fractions from purified extract of Lawsonia inermis leaves in alloxan–induced diabetic mice. International Journal of Applied Pharmaceutics, 13(4), 89–94. https://doi.org/10.22159/ijap.2021.v13s4.43824

    Article  CAS  Google Scholar 

  31. Hu, H., Wang, S., Zhang, C., Wang, L., Ding, L., Zhang, J., & Wu, Q. (2010). Synthesis and in vitro inhibitory activity of matrine derivatives towards pro-inflammatory cytokines. Bioorganic & Medicinal Chemistry Letters, 20(24), 7537–7539.

    Article  CAS  Google Scholar 

  32. Badr, J. M. (2008). Antioxidant and antimicrobial constituents of Crucianella maritima L. Natural Product Sciences, 14(4), 227–232.

    CAS  Google Scholar 

  33. Duraipandiyan, V., Al-Dhabi, N. A., & Ignacimuthu, S. (2016). New antimicrobial anthraquinone 6,61-bis (1,5,7-trihydroxy-3-hydroxymethylanthraquinone) isolated from Streptomyces sp. isolate ERI-26. Saudi Journal of Biological Sciences, 23(6), 731–735. https://doi.org/10.1016/j.sjbs.2016.02.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Garcia-Gonzalez, E., Müller, S., Hertlein, G., Heid, N., Süssmuth, R. D., & Genersch, E. (2014). Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiology Open, 3(5), 642–656. https://doi.org/10.1002/mbo3.195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Handayani, S., & Arty, I. S. (2008). Synthesis of hydroxyl radical scavengers from benzalacetone and its derivatives. Journal of Physical Science, 19(2), 61–68.

    CAS  Google Scholar 

  36. Morales-Cedeno, L. R., OrozcoMosqueda, M. D. C., Loeza-Lara, P. D., Parra-Cota, F. I., Santos-Villalobos, S. D. L., & Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research, 242(2021), 1–12. https://doi.org/10.1016/j.micres.2020.126612

    Article  CAS  Google Scholar 

  37. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7(1538), 1–8. https://doi.org/10.3389/fmicb.2016.01538

    Article  Google Scholar 

  38. Nxumalo, C. I., Ngidi, L. S., Shandu, J. S. E., & Maliehe, T. S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine and Therapies, 20(1), 1–11. https://doi.org/10.1186/s12906-020-03095-z

    Article  CAS  Google Scholar 

  39. Xin, L. Y., Min, T. H., Zin, P. N. L. M., Pulingam, T., Appaturi, J. N., & Parumasivam, T. (2021). Antibacterial potential of Malaysian ethnomedicinal plants against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Saudi Journal of Biological Sciences, 28(10), 5884–5889.

    Article  Google Scholar 

  40. Bakar, R. A., Ahmad, I., & Sulaiman, S. F. (2012). Effect of Pithecellobium jiringa as antimicrobial agent. Bangladesh Journal of Pharmacology, 7, 131–134. https://doi.org/10.3329/bjp.v7i2.10973

    Article  Google Scholar 

  41. Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543. https://doi.org/10.1128/MMBR.00013-14

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nadar, S., Khan, T., Patching, S. G., & Omri, A. (2022). Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms, 10(303), 1–28. https://doi.org/10.3390/microorganisms10020303

    Article  CAS  Google Scholar 

  43. Khan, F., Oloketuyi, S. F., & Kim, Y. M. (2019). Diversity of bacteria and bacterial products as antibiofilm and antiquorum sensing drugs against pathogenic bacteria. Current Drug Targets, 20(11), 1156–1179. https://doi.org/10.2174/1389450120666190423161249

    Article  PubMed  CAS  Google Scholar 

  44. Ansary, W. R., Prince, F. R. K., Haque, E., Sultana, F., West, H. M., Rahman, M. M., Mondol, A. M., Akanda, A. M., Rahman, M., Clarke, M. L., & Islam, M. T. (2018). Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth. Zeitschrift fuer Naturforschung, C: Journal of Biosciences, 73, 1–10. https://doi.org/10.1515/znc-2018-0002

    Article  CAS  Google Scholar 

  45. Islam, T., Rabbee, M. F., Choi, J., & Baek, K. H. (2022). Biosynthesis, molecular regulation, and application of bacilysin produced by Bacillus species. Metabolites, 12(397), 1–13. https://doi.org/10.3390/metabo12050397

    Article  CAS  Google Scholar 

  46. Qin, Y., Wang, Y., He, Y., Zhang, Y., She, Q., Chai, Y., Li, P., & Shang, Q. (2019). Characterization of subtilin l-q11, a novel class i bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Frontiers in Microbiology, 10, 1–11. https://doi.org/10.3389/fmicb.2019.00484

    Article  Google Scholar 

  47. Tang, H. L., Sun, C. H., Hu, X. X., You, X. F., Wang, M., & Liu, S. W. (2016). Damxungmacin A and B, two new amicoumacins with rare heterocyclic cores isolated from Bacillus subtilis XZ-7. Molecules, 21(11), 1–10. https://doi.org/10.3390/molecules21111601

    Article  CAS  Google Scholar 

  48. Cai, D., Zhang, B., Zhu, J., Xu, H., Liu, P., Wang, Z., Li, J., Yang, Z., Ma, X., & Chen, S. (2020). Enhanced bacitracin production by systematically engineering s-adenosylmethionine supply modules in Bacillus licheniformis. Frontiers in Bioengineering and Biotechnology, 8(305), 1–12. https://doi.org/10.3389/fbioe.2020.00305

    Article  Google Scholar 

  49. Song, L., Jenner, M., Masschelein, J., Jones, C., Bull, M. J., Harris, S. R., Hartkoorn, R. C., Vocat, A., Romero-Canelon, I., Coupland, P., Webster, G., Dunn, M., Weiser, R., Paisey, C., Cole, S. T., Parkhill, J., Mahenthiralingam, E., & Challis, G. L. (2017). Discovery and biosynthesis of gladiolin: A Burkholderia gladioli antibiotic with promising activity against Mycobacterium tuberculosis. Journal of the American Chemical Society, 139(23), 7974–7981. https://doi.org/10.1021/jacs.7b03382

    Article  PubMed  CAS  Google Scholar 

  50. Mizuno, C. M., Kimes, N. E., López-Pérez, M., Ausó, E., Rodriguez-Valera, F., & Ghai, R. (2013). A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains. PlosOne., 8(9), 1–12. https://doi.org/10.1371/journal.pone.0076021

    Article  CAS  Google Scholar 

  51. Courtial, J., Helesbeux, J. J., Oudart, H., Aligon, S., Bahut, M., Hamon, B., N’Guyen, G., Pigné, S., Hussain, A. G., Pascouau, C., Bataillé-Simoneau, N., Collemare, J., Berruyer, R., & Poupard, P. (2022). Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Science and Reports, 12(1), 1–20. https://doi.org/10.1038/s41598-022-11896-0

    Article  CAS  Google Scholar 

  52. Miller, K. I., Qing, C., Sze, D. M. Y., & Neilan, B. A. (2012). Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PlosOne, 7(5), 1–12. https://doi.org/10.1371/journal.pone.0035953

    Article  CAS  Google Scholar 

  53. Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Frontiers in Microbiology, 10(302), 1–19. https://doi.org/10.3389/fmicb.2019.00302

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tjandrawati Mozef from The Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), for the detailed discussion during the research.

Funding

This study was funded by The Institution of Research and Community Services, IPB University, Indonesia, through “Penelitian Dosen Muda” Program under grant number 2881/IT3.L1/PT.01.03/M/T/2022, which was awarded to Jepri Agung Priyanto.

Author information

Authors and Affiliations

Authors

Contributions

JAP, MEP, and RIA contributed to the experimental design. JAP, MEP, and RK were involved in laboratory work and data analysis. JAP, MEP, and RIA confirmed and interpreted all research data and contributed to paper writing.

Corresponding author

Correspondence to Jepri Agung Priyanto.

Ethics declarations

Ethics Approval and Consent to Participate

The authors have agreed to participate in the publication of the paper.

Consent for Publication

All authors have agreed to publish the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanto, J.A., Prastya, M.E., Astuti, R.I. et al. The Antibacterial and Antibiofilm Activities of the Endophytic Bacteria Associated with Archidendron pauciflorum against Multidrug-Resistant Strains. Appl Biochem Biotechnol 195, 6653–6674 (2023). https://doi.org/10.1007/s12010-023-04382-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04382-4

Keywords

Navigation