Skip to main content

Advertisement

Log in

Deregulation of miR-375 Inhibits HOXA5 and Promotes Migration, Invasion, and Cell Proliferation in Breast Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a highly aggressive tumour and one of the women’s leading causes of cancer-related deaths in worldwide. MiR-375 overexpressed in BC cells, and its biological relevance is largely unknown. Here in, we explored the function of miR-375 in BC. MicroRNA-375 targets were predicted by online target prediction tools and found that HOXA5 is one of the potential targets. MTT assay was employed to assess the effect of miR-375 on cell proliferation, where migration and invasion transwell assays were applied to detect cell migratory and invasive ability. Besides, relative expression of miR-375 and HOXA5 was measured in BC and HEK-293 cells, and its downstream gene target expressions were evaluated by qRT-PCR and western blot. In this study, we found that miR-375 expression was higher in BC cell lines than in the HEK-293 cell line, whereas HOXA5 expression was significantly lower. Our study showed that exogenous inhibition of miR-375 promoted HOXA5 expression; on the contrary, miR-375 mimics down-regulated HOXA5 expression level. Knockdown of miR-375 expression in BC cells reduces cell proliferation, migration, and invasion by inverse correlation expression of HOXA5. Our findings associated that miR-375 accelerated apoptosis evasion, proliferation, migration, and invasion by targeting HOXA5. In addition, nucleolin interferes in miR-375 biogenesis while silencing of nucleolin significantly reduced miR-375 expression and increased HOXA5 expression in BC. Thus, miR-375/HOXA5 axis may represent a potential therapeutic target for BC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA A Cancer Journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Chen, C. P., Sun, Z. L., Lu, X., Wu, W. X., Guo, W. L., LU, J. J., Fang, Y. (2015). miR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer, Oncology Reports, 35(2), 709–716. https://doi.org/10.3892/or.2015.4411

  3. Shibuya, H., Iinuma, H., Shimada, R., Horiuchi, A., & Watanabe, T. (2010). Clinicopathological and Prognostic Value of MicroRNA-21 and MicroRNA-155 in Colorectal Cancer, Oncology,79(3–4), 313–320. https://doi.org/10.1159/000323283

  4. Hu, J., Shan, Z., Hu, K., Ren, F., Zhang, W. E. I., Han, M., Feng, Y. (2016). miRNA-223 inhibits epithelial-mesenchymal transition in gastric carcinoma cells via Sp1, International Journal of Oncology, 49(1), 325–335. https://doi.org/10.3892/ijo.2016.3533

  5. Ma, L. (2016). MicroRNA and Metastasis, Advances in Cancer Research (pp. 165–207). Elsevier. https://doi.org/10.1016/bs.acr.2016.07.004

  6. Braicu, C., Raduly, L., Morar-Bolba, G., Cojocneanu, R., Jurj, A., Pop, L.-A., Berindan-Neagoe, I. (2018). Aberrant miRNAs expressed in HER-2 negative breast cancers patient. Journal of experimental & clinical cancer research : CR, 37(1), 257. https://doi.org/10.1186/s13046-018-0920-2

  7. Tang, W., Li, G. S., Li, J. D., Pan, W. Y., Shi, Q., Xiong, D.D., Rong, M. H. (2020). The role of upregulated miR-375 expression in breast cancer: An in vitro and in silico study, Pathology-Research and Practice,216(1), 152754. https://doi.org/10.1016/j.prp.2019.152754

  8. Guan, X., Shi, A., Zou, Y., Sun, M., Zhan, Y., Dong, Y., & Fan, Z. (2021). EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.633756

  9. Nurzadeh, M., Naemi, M., & Hasani, S. S. (2021). A comprehensive review on oncogenic miRNAs in breast cancer. Journal of Genetics, 100(1), https://doi.org/10.1007/s12041-021-01265-7

  10. Frank, A.-C., Ebersberger, S., Fink, A. F., Lampe, S., Weigert, A., Schmid, T., Brüne, B. (2019). Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype, Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08989-2

  11. Zedan, A. H., Osther, P. J. S., Assenholt, J., Madsen, J. S., & Hansen, T. F. (2020). Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Scientific Reports, 10(1), https://doi.org/10.1038/s41598-019-57101-7

  12. Abramovic, I., Vrhovec, B., Skara, L., Vrtaric, A., Gabaj, N. N., Kulis, T., Sincic, N. (2021). MiR-182-5p and miR-375-3p Have Higher Performance Than PSA in Discriminating Prostate Cancer from Benign Prostate Hyperplasia, Cancers,13(9), 2068. https://doi.org/10.3390/cancers13092068

  13. Xu, Y., Jin, J., Liu, Y., Huang, Z., Deng, Y., You, T., Zhuo, W. (2014). Snail-Regulated MiR-375 Inhibits Migration and Invasion of Gastric Cancer Cells by Targeting JAK2. PLoS ONE, 9(7), e99516. https://doi.org/10.1371/journal.pone.0099516

  14. Jayamohan, S., Kannan, M., Moorthy, R. K., Rajasekaran, N., Jung, H. S., Shin, Y. K., & Arockiam, A. J. V. (2019). Dysregulation of miR-375/AEG-1 Axis by Human Papillomavirus 16/18-E6/E7 promotes Cellular Proliferation, Migration, and Invasion in Cervical Cancer. Frontiers in oncology, 9, 847. https://doi.org/10.3389/fonc.2019.00847

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alam, K. J., Mo, J. S., Han, S. H., Park, W. C., Kim, H. S., Yun, K. J., & Chae, S. C. (2017). MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. International Journal of Cancer, 141(8), 1614–1629. https://doi.org/10.1002/ijc.30861

    Article  CAS  PubMed  Google Scholar 

  16. Xu, X., Liu, Y., Li, Y., Chen, H., Zhang, Y., Liu, J., … Ke, Y. (2021). Selective exosome exclusion of miR-375 by glioma cells promotes glioma progression by activating the CTGF-EGFR pathway. Journal of Experimental & Clinical Cancer Research, 40(1). https://doi.org/10.1186/s13046-020-01810-9

  17. Zhang, B., Li, Y., Hou, D., Shi, Q., Yang, S., & Li, Q. (2017). MicroRNA-375 inhibits growth and enhances radiosensitivity in oral squamous cell carcinoma by targeting insulin like growth factor 1 receptor. Cellular Physiology and Biochemistry, 42(5), 2105–2117. https://doi.org/10.1159/000479913

    Article  CAS  PubMed  Google Scholar 

  18. Gehring, W. J., & Hiromi, Y. (1986). Homeotic genes and homeobox. Annual Review of Genetics, 20(1), 147–173. https://doi.org/10.1146/annurev.ge.20.120186.001051

    Article  CAS  PubMed  Google Scholar 

  19. Anbazhagan, R., & Raman, V. (1997). Homeobox genes: molecular link between congenital anomalies and cancer. European Journal of Cancer, 33(4), 635–637. https://doi.org/10.1016/s0959-8049(97)00010-5

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, H., Zhao, J., & Suo, Z. (2017). Knockdown of HOXA5 inhibits the tumorigenesis in esophageal squamous cell cancer. Biomedicine and Pharmacotherapy, 86, 149–154. https://doi.org/10.1016/j.biopha.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  21. Peng, X., Zha, L., Chen, A., & Wang, Z. (2018). HOXA5 is a tumor suppressor gene that is decreased in gastric cancer. Oncology Reports. https://doi.org/10.3892/or.2018.6537

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y. F., Liu, F., Sherwin, S., Farrelly, M., Yan, X. G., Croft, A., Jiang, C. C. (2018). Cooperativity of HOXA5 and STAT3 Is Critical for HDAC8 Inhibition-Mediated Transcriptional Activation of PD-L1 in Human Melanoma Cells. Journal of Investigative Dermatology, 138(4), 922–932. https://doi.org/10.1016/j.jid.2017.11.009

  23. Ma, H. M., Cui, N., & Zheng, P. S. (2020). HOXA5 inhibits the proliferation and neoplasia of cervical cancer cells via downregulating the activity of the Wnt/ß-catenin pathway and transactivating TP53. Cell Death and Disease, 11(6), https://doi.org/10.1038/s41419-020-2629-3

  24. Kim, D.-S., Kim, M.-J., Lee, J.-Y., Lee, S.-M., Choi, J.-Y., Yoon, G.-S., … Park, J.-Y. (2009). Epigenetic inactivation of Homeobox A5 gene in nonsmall cell lung cancer and its relationship with clinicopathological features. Molecular Carcinogenesis, 48(12), 1109–1115. https://doi.org/10.1002/mc.20561

  25. Jeannotte, L., Gotti, F., & Landry-Truchon, K. (2016). Hoxa5: a key player in Development and Disease. Journal of Developmental Biology, 4(2), 13. https://doi.org/10.3390/jdb4020013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henderson, G. S., van Diest, P. J., Burger, H., Russo, J., & Raman, V. (2006). Expression pattern of a homeotic gene, HOXA5, in normal breast and in breast tumors. Analytical Cellular Pathology, 28(5–6), 305–313. https://doi.org/10.1155/2006/974810

    Article  CAS  Google Scholar 

  27. Raman, V., Martensen, S. A., Reisman, D., Evron, E., Odenwald, W. F., Jaffee, E., Sukumar, S. (2000). Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature, 405(6789), 974–978. https://doi.org/10.1038/35016125

  28. Godfrey, T. C., Wildman, B. J., Beloti, M. M., Kemper, A. G., Ferraz, E. P., Roy, B., Hassan, Q. (2018). The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. Journal of Biological Chemistry, 293(45), 17646–17660. https://doi.org/10.1074/jbc.ra118.003052

  29. Wang, H., Wei, H., Wang, J., Li, L., Chen, A., & Li, Z. (2020). MicroRNA-181d-5p-Containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast Cancer. Molecular Therapy - Nucleic Acids, 19, 654–667. https://doi.org/10.1016/j.omtn.2019.11.024

    Article  CAS  PubMed  Google Scholar 

  30. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: an overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588

    Article  CAS  Google Scholar 

  31. Kannan, M., Jayamohan, S., Moorthy, R. K., Chabattula, S. C., Ganeshan, M., & Arockiam, A. J. V. (2022). Dysregulation of miRISC Regulatory Network promotes Hepatocellular Carcinoma by Targeting PI3K/Akt signaling pathway. International Journal of Molecular Sciences, 23(19), 11300. https://doi.org/10.3390/ijms231911300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moorthy, R. K., Srinivasan, C., Jayamohan, S., Kannan, M. K., Thirugnanam, S. S., Ganesh, J. S., & Arockiam, A. J. V. (2021). Knockdown of microRNA-375 suppresses cell proliferation and promotes apoptosis in human breast cancer cells. Indian Journal of Science and Technology, 14(43), 3199–3209. https://doi.org/10.17485/IJST/v14i43.1719

    Article  CAS  Google Scholar 

  33. Moorthy, R. K., Jayamohan, S., Kannan, M. K., & Arockiam, A. J. V. (n.d.). Parthenolide Induces Apoptosis and Cell Cycle Arrest by the Suppression of miR-375 Through Nucleolin in Prostate Cancer. .Journal of Pharmaceutical Research International, 33(45A), 215–227, https://doi.org/10.9734/jpri/2021/v33i45A32736

  34. Zhang, Z. W., Men, T., Feng, R. C., Li, Y. C., Zhou, D., & Teng, C. B. (2013). miR-375 inhibits proliferation of mouse pancreatic progenitor cells by targeting YAP1. Cellular Physiology and Biochemistry, 32(6), 1808–1817. https://doi.org/10.1159/000356614

    Article  CAS  PubMed  Google Scholar 

  35. Vickers, N. J. (2017). Animal Communication: when I’m calling you, will you answer too? Current Biology, 27(14), R713–R715. https://doi.org/10.1016/j.cub.2017.05.064.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, L., Li, X., Zhao, Y., Liu, W., Wu, H., Liu, J., Wu, H. (2017). Down-regulated microRNA-375 expression as a predictive biomarker in non-small cell lung cancer brain metastasis and its prognostic significance. Pathology - Research and Practice, 213(8), 882–888. https://doi.org/10.1016/j.prp.2017.06.012

  37. Hu, C., Lv, L., Peng, J., Liu, D., Wang, X., Zhou, Y., & Huo, J. (2017). MicroRNA-375 suppresses esophageal cancer cell growth and invasion by repressing metadherin expression. Oncology Letters, 13(6), 4769–4775. https://doi.org/10.3892/ol.2017.6098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, J. J. M., Ginter, P. S., Tyryshkin, K., Yang, X., Nanayakkara, J., Zhou, Z., Renwick, N. (2020). Classifying Lung Neuroendocrine Neoplasms through MicroRNA Sequence Data Mining. Cancers, 12(9), 2653. https://doi.org/10.3390/cancers12092653

  39. Yang, X., Nanayakkara, J., Claypool, D., Saghafinia, S., Wong, J. J. M., Xu, M., Renwick, N. (2021). A miR-375/YAP axis regulates neuroendocrine differentiation and tumorigenesis in lung carcinoid cells. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89855-4

  40. Wu, Y., Sun, X., Song, B., Qiu, X., & Zhao, J. (2017). MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Medicine, 6(7), 1686–1697. https://doi.org/10.1002/cam4.1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, S., Shi, J., Mao, J., Luo, X., Liu, W., Liu, R., & Yang, F. (2019). The expression of miR-375 in prostate cancer: a study based on GEO, TCGA data and bioinformatics analysis. Pathology - Research and Practice, 215(6), 152375. https://doi.org/10.1016/j.prp.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  42. Costa-Pinheiro, P., Ramalho-Carvalho, J., Vieira, F. Q., Torres-Ferreira, J., Oliveira, J., Gonçalves, C. S., Jerónimo, C. (2015). MicroRNA-375 plays a dual role in prostate carcinogenesis. Clinical epigenetics, 7(1), 42. https://doi.org/10.1186/s13148-015-0076-2

  43. De Souza Rocha Simonini, P., Breiling, A., Gupta, N., Malekpour, M., Youns, M., Omranipour, R., Riazalhosseini, Y. (2010). Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor alpha in Breast Cancer Cells, Cancer Research, 70(22), 9175–9184. https://doi.org/10.1158/0008-5472.can-10-1318

  44. Montavon, T., & Soshnikova, N. (2014). Hox gene regulation and timing in embryogenesis. Seminars in Cell & Developmental Biology, 34, 76–84. https://doi.org/10.1016/j.semcdb.2014.06.005

    Article  CAS  Google Scholar 

  45. Mallo, M., & Alonso, C. R. (2013). The regulation of hox gene expression during animal development. Development, 140(19), 3951–3963. https://doi.org/10.1242/dev.068346

    Article  CAS  PubMed  Google Scholar 

  46. Abramovich, C., & Humphries, R. K. (2005). Hox regulation of normal and leukemic hematopoietic stem cells. Current Opinion in Hematology, 12(3), 210–216. https://doi.org/10.1097/01.moh.0000160737.52349.aa

    Article  CAS  PubMed  Google Scholar 

  47. Moens, C. B., & Selleri, L. (2006). Hox cofactors in vertebrate development. Developmental Biology, 291(2), 193–206. https://doi.org/10.1016/j.ydbio.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  48. Sample, J., Brooks, L., Sample, C., Young, L., Rowe, M., Gregory, C., Kieff, E. (1991). Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site. Proceedings of the National Academy of Sciences, 88(14), 6343–6347. https://doi.org/10.1073/pnas.88.14.6343

  49. Pai, P., Wang, G., Teo, W. W., Raez-Rodriguez, D., Gabrielson, K. L., Győrffy, B., … Sukumar, S. (2022). HOXA5-Mediated Stabilization of IκBα Inhibits the NF-κB Pathway and Suppresses Malignant Transformation of Breast Epithelial Cells. Cancer Research, 82(20), 3802–3814. https://doi.org/10.1158/0008-5472.CAN-21-4277

  50. Chen, H., Chung, S., & Sukumar, S. (2004). HOXA5-Induced apoptosis in breast Cancer cells is mediated by caspases 2 and 8. Molecular and Cellular Biology, 24(2), 924–935. https://doi.org/10.1128/mcb.24.2.924-935.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stasinopoulos, I. A., Mironchik, Y., Raman, A., Wildes, F., Winnard, P., & Raman, V. (2005). HOXA5-Twist Interaction alters p53 homeostasis in breast Cancer cells. Journal of Biological Chemistry, 280(3), 2294–2299. https://doi.org/10.1074/jbc.m411018200

    Article  CAS  PubMed  Google Scholar 

  52. Teo, W. W., Merino, V. F., Cho, S., Korangath, P., Liang, X., Wu, R., Sukumar, S. (2016). HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene, 35(42), 5539–5551. https://doi.org/10.1038/onc.2016.95

  53. Gendronneau, G., Lemieux, M., Morneau, M., Paradis, J., Têtu, B., Frenette, N., Jeannotte, L. (2010). Influence of Hoxa5 on p53 Tumorigenic Outcome in Mice. The American Journal of Pathology, 176(2), 995–1005. https://doi.org/10.2353/ajpath.2010.090499

  54. Yu, T., Chen, D., Zhang, L., & Wan, D. (2019). microRNA-26a-5p promotes Proliferation and Migration of Osteosarcoma cells by targeting HOXA5 in vitro and in vivo. OncoTargets and therapy, 12, 11555–11565. https://doi.org/10.2147/OTT.S232100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen, W. C., & Shi, Y. W. (2021). Effect of MiR-142-3p Targeting HOXA5 on proliferation, cycle arrest and apoptosis of Acute B lymphocytic leukemia cells. Zhongguo shi yan xue ye xue za zhi, 29(4), 1085–1092. https://doi.org/10.19746/j.cnki.issn.1009-2137.2021.04.011

    Article  PubMed  Google Scholar 

  56. Liu, X., Lu, K., Wang, K., Sun, M., Zhang, E., Yang, J., Wang, Z. (2012). MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer, 12(1). https://doi.org/10.1186/1471-2407-12-348

  57. Wan, N., & Zheng, J. (2021). MicroRNA–891a–5p is a novel biomarker for non–small cell lung cancer and targets HOXA5 to regulate tumor cell biological function. Oncology Letters, 22(1), https://doi.org/10.3892/ol.2021.12768

  58. Liu, Y., Lin, C., Wang, D., Wen, S., Wang, J., Chen, Z., Feng, D. (2020). MicroRNA-224 Promotes Cell Migration and Invasion by Targeting HOXA5 expression in Hepatocellular Carcinoma. bioRxiv, https://doi.org/10.1101/2020.08.27.269654

  59. Lu, X., Duan, J., Zhou, R., & Xu, Y. (2021). MiR-301b-3p promotes the occurrence and development of breast Cancer cells via Targeting HOXA5. Critical Reviews in Eukaryotic Gene Expression, 31(3), 35–44. https://doi.org/10.1615/critreveukaryotgeneexpr.2021038215

    Article  PubMed  Google Scholar 

  60. Wolfson, E., Solomon, S., Schmukler, E., Goldshmit, Y., & Pinkas-Kramarski, R. (2018). Nucleolin and ErbB2 inhibition reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death and Disease, 9(2), https://doi.org/10.1038/s41419-017-0067-7

  61. Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533. https://doi.org/10.1038/nature08199

    Article  CAS  PubMed  Google Scholar 

  62. Davis, B. N., Hilyard, A. C., Lagna, G., & Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 454(7200), 56–61. https://doi.org/10.1038/nature07086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blahna, M. T., & Hata, A. (2012). Smad-mediated regulation of microRNA biosynthesis. FEBS Letters, 586(14), 1906–1912. https://doi.org/10.1016/j.febslet.2012.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, J., Pu, W., Sun, H.-L., Zhou, J.-K., Fan, X., Zheng, Y., … Peng, Y. (2018). Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death and Differentiation, 25(9), 1612–1624. https://doi.org/10.1038/s41418-018-0065-z

  65. Kawai, S., & Amano, A. (2012). BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. Journal of Cell Biology, 197(2), 201–208. https://doi.org/10.1083/jcb.201110008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pickering, B. F., Yu, D., & Van Dyke, M. W. (2011). Nucleolin protein interacts with microprocessor complex to affect biogenesis of microRNAs 15a and 16. The Journal of biological chemistry, 286(51), 44095–44103. https://doi.org/10.1074/jbc.M111.265439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pichiorri, F., Palmieri, D., Luca, L. De, Consiglio, J., You, J., Rocci, A., Croce, C. M. (2013). In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. Journal of Experimental Medicine, 210(5), 951–968. https://doi.org/10.1084/jem.20120950

Download references

Acknowledgements

We sincerely thank the University Grant Commission (UGC), New Delhi, India for providing financial assistance for this project (F.No.41-1274/2012/(SR) dt:26.7.2012) and DST for providing funds for the improvement of the infrastructure facility (FIST) to the Department of Biochemistry, Bharathidasan University, Tiruchirappalli- 620 024, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study conception, design, and execution.

Corresponding author

Correspondence to Antony Joseph Velanganni Arockiam.

Ethics declarations

Consent to Participate

all authors agreed to participate.

Consent for Publication

all authors agreed for the publication of their work.

Competing Interests

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moorthy, R.K., Srinivasan, C., Kannan, M. et al. Deregulation of miR-375 Inhibits HOXA5 and Promotes Migration, Invasion, and Cell Proliferation in Breast Cancer. Appl Biochem Biotechnol 195, 4503–4523 (2023). https://doi.org/10.1007/s12010-023-04375-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04375-3

Keywords

Navigation