Skip to main content
Log in

Efficient synthesis of Ala-Tyr by L-amino acid ligase coupled with ATP regeneration system

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The multi-enzyme coupling reaction system has become a promising biomanufacturing platform for biochemical production. Tyr is an essential amino acid, but the limited solubility restricts its use. Tyrosyl dipeptide has been paid more attention due to its higher solubility. In this study, an efficient enzymatic cascade of Ala-Tyr synthesis was developed by a L-amino acid ligase together with polyphosphate kinase (PPK). Two L-amino acid ligases from Bacillus subtilis and Bacillus pumilus were selected and applied for Ala-Tyr synthesis. The L-amino acid ligase from B. subtilis (Bs) was selected and coupled with the PPK from Sulfurovum lithotrophicum (PPKSL) for regenerating ATP to produce Ala-Tyr in one pot. In the optimization system, 40.1 mM Ala-Tyr was produced within 3 h due to efficient ATP regeneration with hexametaphosphate (PolyP(6)) as the phosphate donor. The molar yield was 0.89 mol/mol based on the substrates added, while the productivity of Ala-Tyr achieved 13.4 mM/h, which were the highest yield and productivity ever reported about Ala-Tyr synthesis with L-amino acid ligase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data in the manuscript are available.

References

  1. Daabees, T. T., & Stegink, L. D. (1978). L-alanyl-L-tyrosine as a tyrosine source during intravenous nutrition of the rat. Journal of Nutrition, 108, 1104–1113.

    Article  CAS  PubMed  Google Scholar 

  2. Druml, W., Lochs, H., & Roth, E. (1995). Utilization of tyrosine-containing dipeptides and N-acetyl-tyrosine in hepatic failure. Hepatology, 21, 923–928.

    CAS  PubMed  Google Scholar 

  3. Yagasaki, M., & Hashimoto, S. (2008). Synthesis and application of dipeptides; current status and perspectives. Applied Microbiology and Biotechnology, 81, 13–22.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka, T., Takagi, K., Saddam, H. M., Takeda, Y., & Wakayama, M. (2017). Purification and Characterization of Elizabethkingia L-Amino Acid Esterase: An enzyme useful for enzymatic synthesis of the dipeptide, Valyl-Glycine. Applied Biochemistry and Biotechnology, 183, 362–373.

    Article  CAS  PubMed  Google Scholar 

  5. Gill, I., López-Fandiño, R., Jorba, X., & Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzyme and Microbial Technology, 18, 162–183.

    Article  CAS  Google Scholar 

  6. Becker, M., Nikel, P., & Andexer, J. N. (2021). A multi-enzyme cascade reaction for the production of 2’3’-cGAMP. Biomolecules, 11, 590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable chemistry. Chemical Reviews, 118, 801–838.

    Article  CAS  PubMed  Google Scholar 

  8. Behrens, G. A., Hummel, A., Padhi, S. K., Schätzle, S., & Bornscheuer, U. T. (2011). Discovery and protein engineering of biocatalysts for organic synthesis. Advanced Synthesis & Catalysis, 353, 2191–2215.

    Article  CAS  Google Scholar 

  9. Rieckenberg, F., Ardao, I., Rujananon, R., & Zeng, A. P. (2014). Cell-free synthesis of 1,3-propanediol from glycerol with a high yield. Engineering in Life Sciences, 14, 380–386.

    Article  CAS  Google Scholar 

  10. Dai, Y. W., Li, M. L., Jiang, B., Zhang, T., & Chen, J. J. (2021). Whole-cell biosynthesis of D-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzyme and Microbial Technology, 145, 109747.

    Article  CAS  PubMed  Google Scholar 

  11. Bordewick, S., Berger, R. G., & Ersoy, F. (2021). Mutagenesis of the L-Amino acid ligase RizA increased the production of bioactive dipeptides. Catalysts, 11, 1385.

    Article  CAS  Google Scholar 

  12. Kino, H., & Kino, K. (2015). Alteration of the substrate specificity of L -amino acid ligase and selective synthesis of Met-Gly as a salt taste enhancer. Bioscience, Biotechnology, and Biochemistry, 79, 1827–1832.

    Article  CAS  PubMed  Google Scholar 

  13. Kino, K., Kotanaka, Y., Arai, T., & Yagasaki, M. (2009). A novel L-Amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide antibiotic rhizocticin. Bioscience, Biotechnology, and Biochemistry, 73, 901–907.

    Article  CAS  PubMed  Google Scholar 

  14. Tabata, K., Ikeda, H., & Hashimoto, S. I. (2005). ywfE in Bacillus subtilis codes for a novel enzyme L-amino acid ligase. Journal of Bacteriology, 187, 5195–5202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, T., Zhang, Y. F., & Ning, L. X. (2020). L-amino acid ligase: A promising alternative for the biosynthesis of L-dipeptides. Enzyme and Microbial Technology, 136, 109537.

    Article  CAS  PubMed  Google Scholar 

  16. Iwamoto, S., Motomura, K., Shinoda, Y., Urata, M., Kato, J., Takiguchi, N., Ohtake, H., Hirota, R., & Kuroda, A. (2007). Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose1,6-diphosphate. Applied and Environment Microbiology, 73, 5676–5678.

    Article  CAS  Google Scholar 

  17. Zhang, X., Wu, H., Huang, B., Li, Z. M., & Ye, Q. (2017). One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. Journal of Biotechnology, 241, 163–169.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C., & Yin, Z. (2020). Highly efficient synthesis of glutathione via a genetic engineering enzymatic method coupled with yeast ATP generation. Catalysts, 10, 33.

    Article  CAS  Google Scholar 

  19. Li, Z., Ning, X., Zhao, Y., Zhang, X., Xiao, C., & Li, Z. (2020). Efficient one-pot synthesis of cytidine-5-monophosphate using an extremophilic enzyme cascade system. Journal of Agriculture and Food Chemistry, 68, 9188–9194.

    Article  CAS  Google Scholar 

  20. Yan, B., Ding, Q., Ou, L., & Zou, Z. (2014). Production of glucose-6-phosphate by glucokinase coupled with an ATP regeneration system. World Journal of Microbiology & Biotechnology, 30, 1123–1128.

    Article  CAS  Google Scholar 

  21. Li, Z., Shen, S., & Li, Z. (2020). Towards the conversion of CO2 into optically pure N-carbamoyl-L-aspartate and orotate by an in vitro multi-enzyme cascade. Green Chemistry, 22, 5798–5805.

    Article  CAS  Google Scholar 

  22. Sun, C., Li, Z., Ning, X., Xu, W., & Li, Z. (2021). In vitro biosynthesis of ATP from adenosine and polyphosphate. Bioresources and Bioprocessing, 8, 117.

    Article  Google Scholar 

  23. Tavanti, M., Hosford, J., Lloyd, R. C., & Brown, M. (2021). ATP regeneration by a single polyphosphate kinase powers multigram-scale aldehyde synthesis in vitro. Green Chemistry, 23, 828–837.

    Article  CAS  Google Scholar 

  24. Zhang, X., Cui, X. W., & Li, Z. M. (2020). Characterization of two polyphosphate kinase 2 enzymes used for ATP synthesis. Applied Biochemistry and Biotechnology, 191, 881–892.

    Article  CAS  PubMed  Google Scholar 

  25. Nocek, B. P., Khusnutdinova, A. N., Ruszkowski, M., Flick, R., Burda, M., & Batyrova, K. (2018). Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catalysis, 8, 10746–10760.

    Article  CAS  Google Scholar 

  26. Mordhorst, S., & Andexer, J. N. (2020). Round, round we go - strategies for enzymatic cofactor regeneration. Natural Products Reports, 37, 1316–1333.

    Article  CAS  Google Scholar 

  27. Parnell, A. E., Mordhorst, S., Kemper, F., Giurrandino, M., Prince, J. P., & Schwarzer, N. J. (2018). Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. PNAS, 115, 3350–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui, X. W., Wang, Z., Li, Z. L., Zhang, X., & Li, Z. M. (2021). Programming integrative multienzyme systems and ionic strength for recyclable synthesis of glutathione. Journal of Agricultural and Food Chemistry, 69, 3887–3894.

    Article  CAS  PubMed  Google Scholar 

  29. Cui, X. W., Li, Z. M. (2021). High production of glutathione by in vitro enzymatic cascade after thermostability enhancement. AIChE Journal, 67, e17055.

  30. Cao, H., Nie, K., Li, C., Xu, H., Wang, F., & Tan, T. (2017). Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions. Applied Microbiology and Biotechnology, 101, 5325–5332.

    Article  CAS  PubMed  Google Scholar 

  31. Adams, J. A. (2001). Kinetic and catalytic mechanisms of protein kinases. Chemical Reviews, 101, 2271–2290.

    Article  CAS  PubMed  Google Scholar 

  32. Endicott, J. A., Noble, M. E. M., & Johnson, L. N. (2012). The structural basis for control of eukaryotic protein kinases. Annual Review of Biochemistry, 81, 587–613.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., Lyu, F., Ge, J., & Liu, Z. (2014). Ink-jet printing an optimal multi-enzyme system. Chemical Communications, 50, 12919–12922.

    Article  CAS  PubMed  Google Scholar 

  34. Bordewick, S., Mast, T. A., Berger, R., & Ersoy, F. (2021). Recombinant production of arginyl dipeptides by L-amino acid ligase RizA coupled with ATP regeneration. Catalysts, 11, 1290.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province (2021KJ109) and the Shandong Provincial Natural Science Foundation (ZR2019MC066).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by X. W. Cui, X. X. Du, Q. Zhao, and Y. Y. Hu. Data analysis was performed by C. H. Tian. The first draft of the manuscript was written by W. L. Song, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenlu Song.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors affirm that consent for publication of all the images.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Du, X., Zhao, Q. et al. Efficient synthesis of Ala-Tyr by L-amino acid ligase coupled with ATP regeneration system. Appl Biochem Biotechnol 195, 4336–4346 (2023). https://doi.org/10.1007/s12010-023-04365-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04365-5

Keywords

Navigation