Skip to main content
Log in

Effects of the Polyphenols Delphinidin and Rosmarinic Acid on the Inducible Intra-cellular Aggregation of Alpha-Synuclein in Model Neuron Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Intracellular aggregation of α-synuclein is a major pathological feature of Parkinson’s disease. In this study, we show that the polyphenols delphinidin and rosmarinic acid suppress intracellular aggregation of α-synuclein in a mouse neuron cell model when added under oxidative stress conditions. To enhance the detection threshold of this preventive effect of the two polyphenols, we generated a new strain of “aggregation prone model cells” that tended to show prominent α-synuclein aggregation even under normal conditions. Using this new highly sensitive cell line, we demonstrate that addition of delphinidin to model cell cultures effectively suppresses the formation of intracellular α-synuclein aggregates. Flow cytometric analysis shows that adding delphinidin decreases the fraction of “dying cells,” cells that were alive but in a damaged state. Our findings suggest the possibility of using polyphenols to prevent and treat the symptoms correlated with the onset of Parkinson’s disease. Additionally, our aggregation-prone cell model may be used in future studies to probe numerous neurodegenerative diseases with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are presented in the article. All of the data that were used to produce the figures in the present study are available upon request from Y. K., Tottori University.

References

  1. Takahashi, R., Ono, K., Takamura, Y., Mizuguchi, M., Ikeda, T., Nishijo, H., & Yamada, M. (2015). Phenolic compounds prevent the oligomerization of alpha-synuclein and reduce synaptic toxicity. Journal of Neurochemistry, 134(5), 943–955.

    Article  CAS  PubMed  Google Scholar 

  2. Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., Hisanaga, S., Goedert, M., & Hasegawa, M. (2006). Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 45(19), 6085–6094.

    Article  CAS  PubMed  Google Scholar 

  3. Ogawa, K., Ishii, A., Shindo, A., Hongo, K., Mizobata, T., Sogon, T., & Kawata, Y. (2020). Spearmint extract containing rosmarinic acid suppresses amyloid fibril formation of proteins associated with dementia. Nutrients, 12(11).

  4. Heysieattalab, S., & Sadeghi, L. (2020). Effects of delphinidin on pathophysiological signs of nucleus basalis of meynert lesioned rats as animal model of Alzheimer disease. Neurochemical Research, 45(7), 1636–1646.

    Article  CAS  PubMed  Google Scholar 

  5. Lv, R., Du, L., Liu, X., Zhou, F., Zhang, Z., & Zhang, L. (2019). Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-kappaB signaling pathway in a mouse model of Parkinson's disease. Life Sciences, 223158–223165.

  6. Giordano, S., Lee, J., Darley-Usmar, V. M., & Zhang, J. (2012). Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS One, 7(9), e44610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Falkenburger, B. H., Saridaki, T., & Dinter, E. (2016). Cellular models for Parkinson’s disease. Journal of Neurochemistry, 139(Suppl), 1121–1130.

    Google Scholar 

  8. Ren, P., Jiang, H., Li, R., Wang, J., Song, N., Xu, H. M., & Xie, J. X. (2009). Rosmarinic acid inhibits 6-OHDA-induced neurotoxicity by anti-oxidation in MES23.5 cells. Journal of Molecular Neuroscience, 39(1-2), 220–225.

    Article  CAS  PubMed  Google Scholar 

  9. Lucchini, R. G., Dorman, D. C., Elder, A., & Veronesi, B. (2012). Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology, 33(4), 838–841.

    Article  CAS  PubMed  Google Scholar 

  10. Fukui, N., Yamamoto, H., Miyabe, M., Aoyama, Y., Hongo, K., Mizobata, T., Kawahata, I., Yabuki, Y., Shinoda, Y., Fukunaga, K., & Kawata, Y. (2021). An alpha-synuclein decoy peptide prevents cytotoxic alpha-synuclein aggregation caused by fatty acid binding protein 3. Journal of Biological Chemistry, 296100663.

  11. Yamamoto, H., Fukui, N., Adachi, M., Saiki, E., Yamasaki, A., Matsumura, R., Kuroyanagi, D., Hongo, K., Mizobata, T., & Kawata, Y. (2020). Human molecular chaperone Hsp60 and its apical domain suppress amyloid fibril formation of alpha-synuclein. International Journal of Molecular Sciences, 21(1), 47.

    Article  CAS  Google Scholar 

  12. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koppen, J., Schulze, A., Machner, L., Wermann, M., Eichentopf, R., Guthardt, M., Hahnel, A., Klehm, J., Kriegeskorte, M. C., Hartlage-Rubsamen, M., Morawski, M., von Horsten, S., Demuth, H. U., Rossner, S., & Schilling, S. (2020). Amyloid-beta peptides trigger aggregation of alpha-synuclein in vitro. Molecules, 25(3), 580.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heikkila, R. E. (2017). Autooxidation of 6-hydroxydopamine. In R. A. Greenwald (Ed.), Handbook Methods For Oxygen Radical Research (p. 233). CRC Press.

    Google Scholar 

  15. Matsuda, Y., & Irie, K. (2010). Polyphenols as potential preventive agents for Alzheimer’s disease. Foods & Food Ingredients Journal of Japan, 21553–21558.

  16. Sato, M., Murakami, K., Uno, M., Nakagawa, Y., Katayama, S., Akagi, K., Masuda, Y., Takegoshi, K., & Irie, K. (2013). Site-specific inhibitory mechanism for amyloid beta42 aggregation by catechol-type flavonoids targeting the Lys residues. Journal of Biological Chemistry, 288(32), 23212–23224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, H. S., Sul, D., Lim, J. Y., Lee, D., Joo, S. S., Hwang, K. W., & Park, S. Y. (2009). Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Bioscience, Biotechnology, and Biochemistry, 73(7), 1685–1689.

    Article  CAS  PubMed  Google Scholar 

  18. Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J., Nishijo, H., Takashima, A., Teplow, D. B., Zagorski, M. G., & Yamada, M. (2012). Phenolic compounds prevent amyloid beta-protein oligomerization and synaptic dysfunction by site-specific binding. Journal of Biological Chemistry, 287(18), 14631–14643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, J. N., Dua, V., & Ulmer, T. S. (2008). Characterization of alpha-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry, 47(16), 4651–4656.

    Article  CAS  PubMed  Google Scholar 

  20. Ono, K., & Yamada, M. (2006). Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Journal of Neurochemistry, 97(1), 105–115.

    Article  CAS  PubMed  Google Scholar 

  21. Caruana, M., Hogen, T., Levin, J., Hillmer, A., Giese, A., & Vassallo, N. (2011). Inhibition and disaggregation of alpha-synuclein oligomers by natural polyphenolic compounds. FEBS Letters, 585(8), 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  22. Qu, L., Xu, H., Jia, W., Jiang, H., & Xie, J. (2019). Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced alpha-synuclein aggregation. Neuropharmacology, 144291–144300.

  23. Murakami, A., Nesumi, A., Maeda-Yamamoto, M., Yamaguchi, H., Yashima, K., Miura, M., Nakano, T., & Nekoshima, K. (2015). Anthocyanin-rich tea Sunrouge upregulates expressions of heat shock proteins in the gastrointestinal tract of ICR mice: A comparison with the conventional tea cultivar Yabukita. Journal of Food and Drug Analysis, 23(3), 407–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halder, B., Das Gupta, S., & Gomes, A. (2012). Black tea polyphenols induce human leukemic cell cycle arrest by inhibiting Akt signaling: Possible involvement of Hsp90, Wnt/beta-catenin signaling and FOXO1. FEBS Letters, 279(16), 2876–2891.

    Article  CAS  Google Scholar 

  25. Roussou, I., Lambropoulos, I., Pagoulatos, G. N., Fotsis, T., & Roussis, I. G. (2004). Decrease of heat shock protein levels and cell populations by wine phenolic extracts. Journal of Agricultural and Food Chemistry, 52(4), 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  26. Lackie, R. E., Maciejewski, A., Ostapchenko, V. G., Marques-Lopes, J., Choy, W. Y., Duennwald, M. L., Prado, V. F., & Prado, M. A. M. (2017). The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Frontiers in Neuroscience, 11254.

  27. Ciechanover, A., & Kwon, Y. T. (2017). Protein quality control by molecular chaperones in neurodegeneration. Frontiers in Neuroscience, 11185.

  28. Burmann, B. M., Gerez, J. A., Matecko-Burmann, I., Campioni, S., Kumari, P., Ghosh, D., Mazur, A., Aspholm, E. E., Sulskis, D., Wawrzyniuk, M., Bock, T., Schmidt, A., Rudiger, S. G. D., Riek, R., & Hiller, S. (2020). Regulation of alpha-synuclein by chaperones in mammalian cells. Nature, 577(7788), 127–132.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, B. (2009). Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochemical Research, 34(4), 630–638.

    Article  CAS  PubMed  Google Scholar 

  30. Matsunaga, N., Imai, S., Inokuchi, Y., Shimazawa, M., Yokota, S., Araki, Y., & Hara, H. (2009). Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Molecular Nutrition & Food Research, 53(7), 869–877.

    Article  CAS  Google Scholar 

  31. Bhullar, K. S., & Rupasinghe, H. P. (2013). Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxidative Medicine and Cellular Longevity, 2013891748.

  32. Kujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients, 10(5), 642.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rong, H., Liang, Y., & Niu, Y. (2018). Rosmarinic acid attenuates beta-amyloid-induced oxidative stress via Akt/GSK-3beta/Fyn-mediated Nrf2 activation in PC12 cells. Free Radical Biology and Medicine, 120114–120123.

Download references

Funding

This research was partially supported by financial aid from WAKASA SEIKATSU Co., Ltd., Japan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.Y. and Y.K.; data curation, H.Y., R.M., M.N., and M.A.; formal analysis, H.Y. and Y.K.; funding acquisition, Y.K.; investigation, H.Y., K.O., K.H., T.M., and Y.K.; methodology, H.Y., R.M., and M.N.; supervision, H.Y., K.H., T.M., K.O., and Y.K.; validation, H.Y., T.M., and Y.K.; writing—original draft, H.Y. and Y.K.; writing—review and editing, H.Y., T.M., and Y.K.

Corresponding author

Correspondence to Yasushi Kawata.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, H., Matsumura, R., Nakashima, M. et al. Effects of the Polyphenols Delphinidin and Rosmarinic Acid on the Inducible Intra-cellular Aggregation of Alpha-Synuclein in Model Neuron Cells. Appl Biochem Biotechnol 195, 4134–4147 (2023). https://doi.org/10.1007/s12010-023-04362-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04362-8

Keywords

Navigation