Skip to main content

Advertisement

Log in

Computational Gene Expression and Network Analysis of Myc Reveal Insights into Its Diagnostic and Prognostic Role in Subtypes of Renal Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we analysed the Myc expression in the pan-kidney cohort (KIPAN) and kidney renal clear cell carcinoma (KIRC) in human tumour tissues compared to normal tissues. Myc is overexpressed and associated with poor overall survival (OS) in the KIPAN and KIRC. It shows that Myc plays a crucial role in the growth and maintenance of these malignancies. Additionally, we explored coexpressed genes, gene-set enrichment analysis of coexpressed genes, proteins and regulatory partners directly linked with Myc in KIPAN and KIRC and their role in cancer-specific events. Pathway enrichment analysis concluded that Myc-related genes are involved in many cancer-related pathways. Furthermore, we studied that among KIPAN, mutant forms of tumour suppressor genes have a poor prognosis and are associated with higher Myc expression but not in KIRC. This paper also investigates the correlation between Myc expression and promoter methylation, tumour-infiltrating lymphocytes, and the interaction of Myc with drugs. Our study indicates that Myc can be used as a diagnostic and prognostic biomarker in patients with KIPAN and KIRC with diverse clinical and pathological characteristics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

RNA sequencing data from the Cancer Genome Atlas (TCGA) was extracted from the Broad GDAC Firehose (http://gdac.broadinstitute.org/). Renal cancer datasets [KIPAN and KIRC] were used in the current study.

Abbreviations

RCC:

Renal cell carcinoma

KIPAN:

Pan-kidney cohort (KICH + KIRC + KIRP)

KICH and chrRCC:

Kidney chromophobe

KIRC and ccRCC:

Kidney renal clear cell carcinoma

KIRP and pRCC:

Kidney renal papillary cell carcinoma

OS:

Overall survival

TP53:

Tumour protein 53

VH:

Von Hippel-Lindau syndrome

SETD2:

SET domain containing 2, histone lysine methyltransferase

HIFs:

Hypoxia inducible factors

TCGA:

The Cancer Genome Atlas

TIMER:

Tumour immune estimation resource

CTD:

Comparative Taxicogenomics Database

RSEM:

RNA-seq by expectation maximization

SD:

Standard deviation

mRNA:

Messenger ribonucleic acid

DNA:

Deoxyribonucleic acid

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

NES:

Normalised enrichment score

FDR:

False discovery rate

KEGG:

Key Kyoto Encyclopedia of Genes and Genomes

TF:

Transcription factor

miRNAs:

Micro ribonucleic acid

GRN:

Gene-regulatory network

TNF:

Tumour necrosis factor

NF-κB:

Nuclear factor kappa B

PPI:

Protein-protein interaction

TFRC:

Transferrin receptor

KDM6B:

Lysine demethylase 6B

TSG:

Tumour suppressor gene

TILs:

Tumour-infiltrating lymphocytes

TGF:

Transforming growth factor

TGFβ:

Transforming growth factor beta

ATF4:

Activating transcription factor 4

MBD2:

Methyl-CpG-binding domain protein 2

PHD:

Prolyl hydroxylase

References

  1. Padala, S. A., Barsouk, A., Thandra, K. C., Saginala, K., Mohammed, A., Vakiti, A., Rawla, P., & Barsouk, A. (2020). Epidemiology of renal cell carcinoma. World Journal of Oncology, 11(3), 79–87. https://doi.org/10.14740/wjon1279

    Article  PubMed  PubMed Central  Google Scholar 

  2. Muglia, V. F., & Prando, A. (2015). Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiologia Brasileira, 48(3), 166–174. https://doi.org/10.1590/0100-3984.2013.1927

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dudani, S., de Velasco, G., Wells, J. C., Gan, C. L., Donskov, F., Porta, C., Fraccon, A., Pasini, F., Lee, J. L., Hansen, A., Bjarnason, G. A., Beuselinck, B., Pal, S. K., Yuasa, T., Kroeger, N., Kanesvaran, R., Reaume, M. N., Canil, C., Choueiri, T. K., & Heng, D. Y. C. (2021). Evaluation of clear cell, papillary, and chromophobe renal cell carcinoma metastasis sites and association with survival. JAMA Network Open, 4(1), e2021869. https://doi.org/10.1001/jamanetworkopen.2020.21869

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shuch, B., Amin, A., Armstrong, A. J., Eble, J. N., Ficarra, V., Lopez-Beltran, A., Martignoni, G., Rini, B. I., & Kutikov, A. (2015). Understanding pathologic variants of renal cell carcinoma: Distilling therapeutic opportunities from biologic complexity. European Urology, 67(1), 85–97. https://doi.org/10.1016/j.eururo.2014.04.029

    Article  PubMed  Google Scholar 

  5. Gordan, J. D., Thompson, C. B., & Simon, M. C. (2007). HIF and C-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108–113. https://doi.org/10.1016/j.ccr.2007.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, S.-W., Chang, W.-H., Su, Y.-C., Chen, Y.-C., Lai, Y.-H., Wu, P.-T., Hsu, C.-I., Lin, W.-C., Lai, M.-K., & Lin, J.-Y. (2009). MYC Pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Letters, 273(1), 35–43. https://doi.org/10.1016/j.canlet.2008.07.038

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of American Statistical Association, 53(282), 457. https://doi.org/10.2307/2281868

    Article  Google Scholar 

  8. Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., & Wang, S. (2010). GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics, 26(7), 976–978. https://doi.org/10.1093/bioinformatics/btq064

    Article  CAS  PubMed  Google Scholar 

  9. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  Google Scholar 

  10. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J. (2019). NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 47(W1), W234–W241. https://doi.org/10.1093/nar/gkz240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z.-P., Wu, C., Miao, H., & Wu, H. (2015). RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database, 2015, bav095. https://doi.org/10.1093/database/bav095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mattingly, C. J., Rosenstein, M. C., Colby, G. T., Forrest, J. N., Jr., & Boyer, J. L. (2006). The Comparative Toxicogenomics Database (CTD): A resource for comparative toxicological studies. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 305A(9), 689–692. https://doi.org/10.1002/jez.a.307

    Article  CAS  Google Scholar 

  15. Dan, H., Zhang, S., Zhou, Y., & Guan, Q. (2019). <p>DNA methyltransferase inhibitors: Catalysts for antitumour immune responses</P>. OncoTargets and Therapy, 12, 10903–10916. https://doi.org/10.2147/OTT.S217767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  17. Ehrlich, M. (2009). DNA Hypomethylation in cancer cells. Epigenomics, 1(2), 239–259. https://doi.org/10.2217/epi.09.33

    Article  CAS  PubMed  Google Scholar 

  18. Camuzi, D., de Amorim, Í., Ribeiro Pinto, L., Oliveira Trivilin, L., Mencalha, A., & Soares Lima, S. (2019). Regulation is in the air: The relationship between hypoxia and epigenetics in cancer. Cells, 8(4), 300. https://doi.org/10.3390/cells8040300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holderfield, M. T., & Hughes, C. C. W. (2008). Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circulation Research, 102(6), 637–652. https://doi.org/10.1161/CIRCRESAHA.107.167171

    Article  CAS  PubMed  Google Scholar 

  20. Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2011). NF-ΚB addiction and its role in cancer: ‘One size does not fit all.’ Oncogene, 30(14), 1615–1630. https://doi.org/10.1038/onc.2010.566

    Article  CAS  PubMed  Google Scholar 

  21. Yang, C. J., Lee, J.-W., & Chung, J. W. (2015). Influences of diabetes on hearing recovery in noise-exposed mice. Journal of Audiology and Otology, 19(3), 138–143. https://doi.org/10.7874/jao.2015.19.3.138

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rao, V. S., Srinivas, K., Sujini, G. N., & Kumar, G. N. S. (2014). Protein-protein interaction detection: Methods and analysis. International Journal of Proteomics, 2014, 1–12. https://doi.org/10.1155/2014/147648

    Article  CAS  Google Scholar 

  25. Scott, D. E., Bayly, A. R., Abell, C., & Skidmore, J. (2016). Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge. Nature Reviews Drug Discovery, 15(8), 533–550. https://doi.org/10.1038/nrd.2016.29

    Article  CAS  PubMed  Google Scholar 

  26. Yang, O. C. Y., Maxwell, P. H., & Pollard, P. J. (2013). Renal cell carcinoma: Translational aspects of metabolism and therapeutic consequences. Kidney International, 84(4), 667–681. https://doi.org/10.1038/ki.2013.245

    Article  CAS  PubMed  Google Scholar 

  27. Yamada, Y., Hidaka, H., Seki, N., Yoshino, H., Yamasaki, T., Itesako, T., Nakagawa, M., & Enokida, H. (2013). Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-myc oncogene in renal cell carcinoma. Cancer Science, 104(3), 304–312. https://doi.org/10.1111/cas.12072

    Article  CAS  PubMed  Google Scholar 

  28. Sumithra, B., Saxena, U., & Das, A. B. (2019). A comprehensive study on genome-wide coexpression network of KHDRBS1/Sam68 reveals its cancer and patient-specific association. Scientific Reports, 9(1), 11083. https://doi.org/10.1038/s41598-019-47558-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, J.-Y., & Hung, M.-C. (2009). A new fork for clinical application: Targeting forkhead transcription factors in cancer. Clinical Cancer Research, 15(3), 752–757. https://doi.org/10.1158/1078-0432.CCR-08-0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, T. I., & Young, R. A. (2013). Transcriptional regulation and its misregulation in disease. Cell, 152(6), 1237–1251. https://doi.org/10.1016/j.cell.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iorio, M. V., & Croce, C. M. (2012). MicroRNA Dysregulation in cancer: Diagnostics, monitoring and therapeutics. A Comprehensive Review. EMBO Molecular Medicine, 4(3), 143–159. https://doi.org/10.1002/emmm.201100209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, L.-H., Wu, C.-F., Rajasekaran, N., & Shin, Y. K. (2018). Loss of tumor suppressor gene function in human cancer: An overview. Cellular Physiology and Biochemistry, 51(6), 2647–2693. https://doi.org/10.1159/000495956

    Article  CAS  PubMed  Google Scholar 

  33. Hakimi, A. A., Chen, Y.-B., Wren, J., Gonen, M., Abdel-Wahab, O., Heguy, A., Liu, H., Takeda, S., Tickoo, S. K., Reuter, V. E., Voss, M. H., Motzer, R. J., Coleman, J. A., Cheng, E. H., Russo, P., & Hsieh, J. J. (2013). Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. European Urology, 63(5), 848–854. https://doi.org/10.1016/j.eururo.2012.09.005

    Article  PubMed  Google Scholar 

  34. Noon, A. P., Vlatković, N., Polański, R., Maguire, M., Shawki, H., Parsons, K., & Boyd, M. T. (2010). P53 and MDM2 in renal cell carcinoma. Cancer, 116(4), 780–790. https://doi.org/10.1002/cncr.24841

    Article  CAS  PubMed  Google Scholar 

  35. Hakimi, A. A., Reznik, E., Lee, C.-H., Creighton, C. J., Brannon, A. R., Luna, A., Aksoy, B. A., Liu, E. M., Shen, R., Lee, W., Chen, Y., Stirdivant, S. M., Russo, P., Chen, Y.-B., Tickoo, S. K., Reuter, V. E., Cheng, E. H., Sander, C., & Hsieh, J. J. (2016). An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell, 29(1), 104–116. https://doi.org/10.1016/j.ccell.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, L., Guo, R., Zhang, X., Liang, Y., Kong, F., Wang, J., & Xu, Z. (2017). Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients. BioScience Trends, 11(2), 214–220. https://doi.org/10.5582/bst.2016.01228

    Article  CAS  PubMed  Google Scholar 

  37. Gordan, J. D., Lal, P., Dondeti, V. R., Letrero, R., Parekh, K. N., Oquendo, C. E., Greenberg, R. A., Flaherty, K. T., Rathmell, W. K., Keith, B., Simon, M. C., & Nathanson, K. L. (2008). HIF-α Effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell, 14(6), 435–446. https://doi.org/10.1016/j.ccr.2008.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38.  Creighton, C. J., Morgan, M., Gunaratne, PH, Wheeler, D. A., et. al, (2013). Comprehensive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature, 499 (7456), 43–49.https://doi.org/10.1038/nature12222

  39. Abousaway, O., Rakhshandehroo, T., van den Abbeele, A. D., Kircher, M. F., & Rashidian, M. (2021). Noninvasive imaging of cancer immunotherapy. Nanotheranostics, 5(1), 90–112. https://doi.org/10.7150/ntno.50860

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48(W1), W509–W514. https://doi.org/10.1093/nar/gkaa407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jochems, C., & Schlom, J. (2011). Tumor-infiltrating immune cells and prognosis: The potential link between conventional cancer therapy and immunity. Experimental Biology and Medicine, 236(5), 567–579. https://doi.org/10.1258/ebm.2011.011007

    Article  CAS  PubMed  Google Scholar 

  42. Irizarry, R. A., Wang, C., Zhou, Y., & Speed, T. P. (2009). Gene set enrichment analysis made simple. Statistical Methods in Medical Research, 18(6), 565–575. https://doi.org/10.1177/0962280209351908

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qin, S., Shi, X., Wang, C., Jin, P., & Ma, F. (2019). Transcription factor and MiRNA interplays can manifest the survival of CcRCC patients. Cancers (Basel), 11(11), 1668. https://doi.org/10.3390/cancers11111668

    Article  CAS  PubMed  Google Scholar 

  44. Vishnoi, K., Viswakarma, N., Rana, A., & Rana, B. (2020). Transcription factors in cancer development and therapy. Cancers (Basel), 12(8), 2296. https://doi.org/10.3390/cancers12082296

    Article  CAS  PubMed  Google Scholar 

  45. Antonangeli, F., Natalini, A., Garassino, M. C., Sica, A., Santoni, A., di Rosa, F. (2020). Regulation of PD- L1 Expression by NF-ΚB in Cancer. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.584626

  46. Deleuze, A., Saout, J., Dugay, F., Peyronnet, B., Mathieu, R., Verhoest, G., Bensalah, K., Crouzet, L., Laguerre, B., Belaud-Rotureau, M.-A., Rioux-Leclercq, N., & Kammerer-Jacquet, S.-F. (2020). Immunotherapy in renal cell carcinoma: The future is now. International Journal of Molecular Sciences, 21(7), 2532. https://doi.org/10.3390/ijms21072532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tran Janco, J. M., Lamichhane, P., Karyampudi, L., & Knutson, K. L. (2015). Tumor-infiltrating dendritic cells in cancer pathogenesis. The Journal of Immunology, 194(7), 2985–2991. https://doi.org/10.4049/jimmunol.1403134

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y., Hu, X., Han, C., Wang, L., Zhang, X., He, X., & Lu, X. (2015). Targeting tumor suppressor genes for cancer therapy. BioEssays, 37(12), 1277–1286. https://doi.org/10.1002/bies.201500093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koshiji, M., Kageyama, Y., Pete, E. A., Horikawa, I., Barrett, J. C., & Huang, L. E. (2004). HIF-1α Induces cell cycle arrest by functionally counteracting Myc. The EMBO Journal, 23(9), 1949–1956. https://doi.org/10.1038/sj.emboj.7600196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, S., Wen, L., Hu, X., Wei, Q., & Dong, Z. (2021). HIF in Nephrotoxicity during cisplatin chemotherapy: Regulation, function and therapeutic potential. Cancers (Basel), 13(2), 180. https://doi.org/10.3390/cancers13020180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Asim Bikas Das (associate professor; National Institute of Technology, Warangal, Telangana) for critically reading the manuscript and for his constructive comments. We acknowledge financial assistance from the National Institute of Technology, Warangal, for providing the computational facility and fellowship for Ph.D. students.

Author information

Authors and Affiliations

Authors

Contributions

Jyotsna Priyam collected and analysed the data with the help of Urmila Saxena. Urmila Saxena conceived and designed the study. Writing, reviewing, editing, and original draft preparation was done by Jyotsna Priyam and Urmila Saxena. Visualization, investigation, and supervision were done by Urmila Saxena.

Corresponding author

Correspondence to Urmila Saxena.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Myc expression was high in tumour samples in comparison to normal in KIPAN [kidney chromophobe (KICH) + kidney renal clear cell carcinoma (KIRC) + kidney renal papillary cell carcinoma (KIRP)] and KIRC (kidney renal clear cell carcinoma).

2. Higher expressions of Myc were associated with poor overall survival in renal cancers (KIPAN and KIRC).

3. Coexpressed genes and directly linked proteins, transcription factors, and miRNAs with Myc in KIPAN and KIRC are analysed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyam, J., Saxena, U. Computational Gene Expression and Network Analysis of Myc Reveal Insights into Its Diagnostic and Prognostic Role in Subtypes of Renal Cancer. Appl Biochem Biotechnol 195, 4251–4276 (2023). https://doi.org/10.1007/s12010-023-04357-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04357-5

Keywords

Navigation