Skip to main content
Log in

Comparison of Alkaline Sulfite Pretreatment and Acid Sulfite Pretreatment with Low Chemical Loading in Saccharification of Poplar

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sulfite pretreatment is a productive process for lignin dissolution in lignocelluloses and to reduce the hydrophobicity of lignin by sulfonation, thus promoting the hydrolyzability of the substrate. Previously, sulfite pretreatment needs high dosages of chemicals and thus results in the high cost of the pretreatment and the great pressure of environmental pollution. To overcome these problems, it was crucial to research whether alkaline sulfite pretreatment (ALS) and acid sulfite pretreatment (ACS) with low chemical loading could enhance the saccharification of poplar. In this work, the results indicated that with low loading of chemicals in sulfite pretreatment, ALS pretreatment (1.6% Na2SO3 and 0.5% NaOH) at 180 °C removed more lignin, resulted in lower hydrophobicity and higher cellulase adsorption capacity of poplar than ACS pretreatment (1.6% Na2SO3 and 0.5% H2SO4) at 180 °C. A satisfying glucose yield of 84.9% and a xylose yield of 76.0% were obtained from poplar after ALS pretreatment with 1.6% Na2SO3 and 0.5% NaOH at 180 °C for 1 h using 10 FPU cellulase/g dry matter, saving sodium sulfite by 60.0% compared to the loading of sulfite in traditional sulfite pretreatment. The strategy developed in this work reduced chemical loading and cellulase loading in alkali sulfite pretreatment for the saccharification of poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable & Sustainable Energy Reviews, 14, 578–597. https://doi.org/10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  2. Yang, J., Xu, H., Jiang, J., Zhang, N., Xie, J., Zhao, J., & Wei, M. (2021). Enhanced enzymatic hydrolysis and structure properties of bamboo by moderate two-step pretreatment. Applied Biochemistry and Biotechnology, 193, 1011–1022. https://doi.org/10.1007/s12010-020-03472-x

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, C., Xu, W., Yan, P., Liu, X., & Zhang, Z. C. (2015). Overcome the recalcitrance of eucalyptus bark to enzymatic hydrolysis by concerted ionic liquid pretreatment. Process Biochemistry, 50, 2208–2214. https://doi.org/10.1016/j.procbio.2015.09.009

    Article  CAS  Google Scholar 

  4. Samavi, M., Uprety, B. K., & Rakshit, S. (2019). Bioconversion of poplar wood hemicellulose prehydrolysate to microbial oil using cryptococcus curvatus. Applied Biochemistry and Biotechnology, 189, 626–637. https://doi.org/10.1007/s12010-019-03032-y

    Article  CAS  PubMed  Google Scholar 

  5. Sorek, N., Yeats, T. H., Szemenyei, H., Youngs, H., & Somerville, C. R. (2014). The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience, 64, 192–201. https://doi.org/10.1093/biosci/bit037

    Article  Google Scholar 

  6. Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers, 117, 624–631. https://doi.org/10.1016/j.carbpol.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  7. Su, Y., Huang, C., Lai, C., Yong, Q. (2021). Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresource Technology, 321. https://doi.org/10.1016/j.biortech.2020.124471

  8. Lai, C., Jia, Y., Wang, J., Wang, R., Zhang, Q., Chen, L., Shi, H., Huang, C., Li, X., Yong, Q. (2019). Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment. Bioresource Technology, 288. https://doi.org/10.1016/j.biortech.2019.121569

  9. Wang, K., Gao, S., Lai, C., Xie, Y., Sun, Y., Wang, J., Wang, C., Yong, Q., Chu, F., Zhang, D. (2022). Upgrading wood biorefinery: An integration strategy for sugar production and reactive lignin preparation. Industrial Crops and Products, 187. https://doi.org/10.1016/j.indcrop.2022.115366

  10. Hou, S., Shen, B., Zhang, D., Li, R., Xu, X., Wang, K., Lai, C., Yong, Q. (2022). Understanding of promoting enzymatic hydrolysis of combined hydrothermal and deep eutectic solvent pretreated poplars by Tween 80. Bioresource Technology, 362. https://doi.org/10.1016/j.biortech.2022.127825

  11. Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, R., & Yadama, V. (2016). Effects of hot water extraction (HWE) of Douglas fir as a pre-process for the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL). Holzforschung, 71, 91–98. https://doi.org/10.1515/hf-2016-0080

    Article  CAS  Google Scholar 

  13. Zhou, H., Gleisner, R., Zhu, J. Y., Tian, Y., & Qiao, Y. (2018). SPORL pretreatment spent liquors enhance the enzymatic hydrolysis of cellulose and ethanol production from glucose. Energy & Fuels, 32, 7636–7642. https://doi.org/10.1021/acs.energyfuels.8b00864

    Article  CAS  Google Scholar 

  14. Wang, G. S., Pan, X. J., Zhu, J. Y., Gleisner, R., & Rockwood, D. (2010). Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnology Progress, 25, 1086–1093. https://doi.org/10.1002/btpr.206

    Article  Google Scholar 

  15. Zhu, W., Zhu, J. Y., Gleisner, R., & Pan, X. J. (2010). On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresource Technology, 101, 2782–2792. https://doi.org/10.1016/j.biortech.2009.10.076

    Article  CAS  PubMed  Google Scholar 

  16. Wei, W. Q., Wu, S. B., & Liu, L. G. (2011). Effect of the alkaline sulfite pretreatment on the enzymatic saccharification of eucalyptus wood. Chemistry & Industry of Forest Products, 39, 1–5. https://doi.org/10.3969/j.issn.1000-565X.2011.11.001

    Article  CAS  Google Scholar 

  17. Wu, J., Chandra, R., Takada, M., Del Rio, P., Kim, K. H., Kim, C. S., Liu, L.-y, Renneckar, S., & Saddler, J. (2020). Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis. Bioresource Technology, 315, 123789. https://doi.org/10.1016/j.biortech.2020.123789

    Article  CAS  PubMed  Google Scholar 

  18. Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied Chemistry, 59, 257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J., Hao, X., Wen, P., Zhang, T., Zhang, J. (2020). Adsorption and desorption of cellulase on/from lignin pretreated by dilute acid with different severities. Industrial Crops and Products, 148. https://doi.org/10.1016/j.indcrop.2020.112309

  21. Li, Y., Sun, Z., Ge, X., Zhang, J. (2016). Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels, 9. https://doi.org/10.1186/s13068-016-0434-0

  22. Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  23. Gessner, A., Waicz, R., Lieske, A., Paulke, B., Mader, K., & Muller, R. H. (2000). Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. International journal of pharmaceutics, 196, 245–249. https://doi.org/10.1016/s0378-5173(99)00432-9

    Article  CAS  PubMed  Google Scholar 

  24. He, J., Huang, C., Lai, C., Huang, C., & Yong, Q. (2017). Relations between moso bamboo surface properties pretreated by kraft cooking and dilute acid with enzymatic digestibility. Applied Biochemistry and Biotechnology, 183, 1526–1538. https://doi.org/10.1007/s12010-017-2520-6

    Article  CAS  PubMed  Google Scholar 

  25. Sluiter A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of Structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure of National Renewable Energy Laboratory (NREL), Golden, Colorado.

    Google Scholar 

  26. Li, P., Cai, D., Luo, Z. F., Qin, P. Y., Chen, C. J., Wang, Y., Zhang, C. W., Wang, Z., & Tan, T. W. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology, 206, 86–92. https://doi.org/10.1016/j.biortech.2016.01.077

    Article  CAS  PubMed  Google Scholar 

  27. Mou, H. Y., Heikkila, E., & Fardim, P. (2013). Topochemistry of alkaline, alkaline-peroxide and hydrotropic pretreatments of common reed to enhance enzymatic hydrolysis efficiency. Bioresource Technology, 150, 36–41. https://doi.org/10.1016/j.biortech.2013.09.093

    Article  CAS  PubMed  Google Scholar 

  28. Yan, Y. H., Zhang, C. H., Lin, Q. X., Wang, X. H., Cheng, B. G. (2018). Microwave-assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and arabinose from bagasse. Molecules, 23. https://doi.org/10.3390/molecules23040862

  29. Lan, T. Q., Jiang, Y. X., Zheng, W. Q., Wang, S. R., Sang, S., & Li, H. (2020). Comprehensively understanding enzymatic hydrolysis of lignocellulose and cellulase-lignocellulose adsorption by analyzing substrates’ physicochemical properties. Bioenergy Research, 13, 1108–1120. https://doi.org/10.1007/s12155-020-10141-8

    Article  CAS  Google Scholar 

  30. Liu, Z. J., Lan, T. Q., Li, H., Gao, X., & Zhang, H. (2017). Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse. Bioresource Technology, 223, 27–33. https://doi.org/10.1016/j.biortech.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z., Zhu, J. Y., Fu, Y., Qin, M., Shao, Z., Jiang, J., Yang. F. (2013). Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnology for Biofuels, 6. https://doi.org/10.1186/1754-6834-6-156

  32. Huang, C., He, J., Chang, H.-M., Jameel, H., & Yong, Q. (2017). Coproduction of ethanol and kignosulfonate from moso bamboo residues by fermentation and sulfomethylation. Waste and Biomass Valorization, 8, 965–974. https://doi.org/10.1007/s12649-016-9629-7

    Article  CAS  Google Scholar 

  33. Karuna, N., & Jeoh, T. (2017). The productive cellulase binding capacity of cellulosic substrates. Biotechnology and Bioengineering, 114, 533–542. https://doi.org/10.1002/bit.26193

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J., Hao, X., Yang, M., Qin, Y., Jia, L., Chu, J., & Zhang, J. (2018). Impact of lignin content on alkaline-sulfite pretreatment of Hybrid Pennisetum. Bioresource Technology, 267, 793–796. https://doi.org/10.1016/j.biortech.2018.07.049

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, J.-Q., Wu, X.-L., Li, W.-C., Qin, L., Chen, S., Xu, T., Liu, H., Zhou, X., Li, X., Zhong, C., Li, B.-Z., & Yuan, Y.-J. (2018). Ethylenediamine pretreatment of corn stover facilitates high gravity fermentation with low enzyme loading. Bioresource Technology, 267, 227–234. https://doi.org/10.1016/j.biortech.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  36. Monte, J. R., Laurito-Friend, D. F., Mussatto, S. I., Ferraz, A., & Milagres, A. M. F. (2018). Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnology Progress, 34, 944–951. https://doi.org/10.1002/btpr.2647

    Article  CAS  PubMed  Google Scholar 

  37. Tang, Y., Dou, X., Hu, J., Jiang, J., & Saddler, J. N. (2018). Lignin sulfonation and SO2 addition enhance the hydrolyzability of deacetylated and then steam-pretreated poplar with reduced inhibitor formation. Applied Biochemistry and Biotechnology, 184, 264–277. https://doi.org/10.1007/s12010-017-2545-x

    Article  CAS  PubMed  Google Scholar 

  38. Anu, K. A., Rapoport, A., Kunze, G., Kumar, S., Singh, D., & Singh, B. (2020). Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review. Renewable Energy, 160, 1228–1252. https://doi.org/10.1016/j.renene.2020.07.031

    Article  CAS  Google Scholar 

  39. Rajpurohit, H., & Eiteman, M. A. (2020). Pretreatment and detoxification of acid-treated wood hydrolysates for pyruvate production by an engineered consortium of escherichia coli. Applied Biochemistry and Biotechnology, 192, 243–256. https://doi.org/10.1007/s12010-020-03320-y

    Article  CAS  PubMed  Google Scholar 

  40. Wang, C., Qi, W., Liang, C., Wang, Q., Wang, W., Wang, Z., & Yuan, Z. (2021). Impact of alkaline pretreatment condition on enzymatic hydrolysis of sugarcane bagasse and pretreatment cost. Applied Biochemistry and Biotechnology, 193, 2087–2097. https://doi.org/10.1007/s12010-021-03530-y

    Article  CAS  PubMed  Google Scholar 

  41. Rawat, R., Kumbhar, B. K., & Tewari, L. (2013). Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Industrial Crops and Products, 44, 220–226. https://doi.org/10.1016/j.indcrop.2012.10.029

    Article  CAS  Google Scholar 

  42. Sun, Q., Foston, M., Meng, X., Sawada, D., Pingali, S. V., O'Neill, H. M., Li, H., Wyman, C. E., Langan, P., Ragauskas, A. J., Kumar, R. (2014). Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnology for Biofuels, 7. https://doi.org/10.1186/s13068-014-0150-6

  43. Jung, Y. H., Cho, H. J., Lee, J. S., Noh, E. W., Park, O. K., & Kim, K. H. (2013). Evaluation of a transgenic poplar as a potential biomass crop for biofuel production. Bioresource Technology, 129, 639–641. https://doi.org/10.1016/j.biortech.2012.12.074

    Article  CAS  PubMed  Google Scholar 

  44. Sakuragi, K., Igarashi, K., & Samejima, M. (2018). Application of ammonia pretreatment to enable enzymatic hydrolysis of hardwood biomass. Polymer Degradation and Stability, 148, 19–25. https://doi.org/10.1016/j.polymdegradstab.2017.12.008

    Article  CAS  Google Scholar 

  45. Zhang, H., Zhou, X., Xu, Y., & Yu, S. (2017). Production of Xylooligosaccharides from Waste Xylan, Obtained from Viscose Fiber Processing, by Selective Hydrolysis Using Concentrated Acetic Acid. Journal of Wood Chemistry and Technology, 37, 1–9. https://doi.org/10.1080/02773813.2016.1214154

    Article  CAS  Google Scholar 

  46. Bay, M. S., Karimi, K., Esfahany, M. N., Kumar, R. (2020). Structural modification of pine and poplar wood by alkali pretreatment to improve ethanol production. Industrial Crops and Products, 152. https://doi.org/10.1016/j.indcrop.2020.112506

  47. Wang, Z. J., Zhu, J. Y., Zalesny, R. S., Jr., & Chen, K. F. (2012). Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel, 95, 606–614. https://doi.org/10.1016/j.fuel.2011.12.032

    Article  CAS  Google Scholar 

  48. Chu, J., Li, S., Chen, N., Wen, P., Sonne, C., & Ma, N. L. (2022). Structural properties and hydrolysability of recycled poplar residues (Populus L.): effects of two-step acetic acid and sodium sulphite pre-treatment. Chemosphere, 291, 132679. https://doi.org/10.1016/j.chemosphere.2021.132679

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X., Song, Y., Ma, S., Zhang, X., & Tan, T. (2020). Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin. Cellulose, 27, 3581–3590. https://doi.org/10.1007/s10570-020-03023-x

    Article  CAS  Google Scholar 

  50. Shuai, L., & Luterbacher, J. (2016). Organic solvent effects in biomass conversion reactions. Chemsuschem, 9, 133–155. https://doi.org/10.1002/cssc.201501148

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, China (No. 31670598).

Author information

Authors and Affiliations

Authors

Contributions

Ying Zhang: methodology, writing—original draft—editing, formal analysis, and conceptualization. Donglin Xin: conceptualization, formal analysis, and visualization. Peiyao Wen: formal analysis, data curation, and visualization. Xiang Chen: methodology, and formal analysis. LiliJia: review—editing, and conceptualization. Zhoumin Lu: reviewing and conceptualization. Junhua Zhang: writing—review and editing, conceptualization, funding acquisition, and supervision.

Corresponding author

Correspondence to Zhoumin Lu.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

All authors consent to publish the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xin, D., Wen, P. et al. Comparison of Alkaline Sulfite Pretreatment and Acid Sulfite Pretreatment with Low Chemical Loading in Saccharification of Poplar. Appl Biochem Biotechnol 195, 4414–4428 (2023). https://doi.org/10.1007/s12010-023-04351-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04351-x

Keywords

Navigation