Skip to main content
Log in

A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper proposes a fabrication of a hyper-sensitive amperometric biosensor for paraoxon-ethyl (PE) detection. In this developed biosensor, polyaniline (PANI) and copper oxide (CuO)–based nanocomposite is used as a sensing platform. The homogeneous distribution of CuO onto the PANI matrix enhances the surface area and conductivity of the nanocomposite. Additionally, the PANI produces a compatible environment for enzyme immobilization, which further enhances the rate of electron transfer. For biosensor fabrication, the nanocomposite is deposited electrophoretically onto the ITO glass substrate and immobilization of acetylcholinesterase (AChE) enzyme is conducted onto the fabricated electrode surface. The results validate good reproducibility, good stability, and high selectivity of the fabricated biosensor (AChE/PANI@CuO/ITO). The inhibition rate of paraoxon-ethyl (PE) is recorded in the concentration range of 1–200 nM with a low limit of detection of 0.096 nM or 96 pM. The sensitivity of the developed biosensor is found to be 49.86 µA(nM)−1. The developed biosensor is further successfully accomplished for the detection of PE in real samples like rice and pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wei, M., & Feng, S. (2017). Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchimica Acta, 184(9), 3461–3468.

    Article  CAS  Google Scholar 

  2. Rajaji, U., Chinnapaiyan, S., Chen, S. M., Govindasamy, M., Oliveira Filho, J. I. D., Khushaim, W., & Mani, V. (2021). Design and fabrication of yttrium ferrite garnet-embedded graphitic carbon nitride: A sensitive electrocatalyst for smartphone-enabled point-of-care pesticide (mesotrione) analysis in food samples. ACS Applied Materials & Interfaces, 13(21), 24865–24876.

    Article  CAS  Google Scholar 

  3. Ma, L., He, Y., Wang, Y., Wang, Y., Li, R., Huang, Z., ..., & Gao, J. (2019). Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochimica Acta318, 525–533.

  4. Zhang, Y., Liu, H., Yang, Z., Ji, S., Wang, J., Pang, P., ..., & Yang, W. (2015). An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Analytical methods7(15), 6213–6219.

  5. Shin, Y., Lee, J., Lee, J., Lee, J., Kim, E., Liu, K. H., ..., & Kim, J. H. (2018). Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography–tandem mass spectrometry. Journal of agricultural and food chemistry66(13), 3550–3560.

  6. He, L., Luo, X., Xie, H., Wang, C., Jiang, X., & Lu, K. (2009). Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Analytica chimica acta, 655(1–2), 52–59.

    Article  CAS  PubMed  Google Scholar 

  7. Santos, C., Oppolzer, D., Gonçalves, A., Barroso, M., & Gallardo, E. (2018). Determination of organophosphorous pesticides in blood using microextraction in packed sorbent and gas chromatography–tandem mass spectrometry. Journal of analytical toxicology, 42(5), 321–329.

    Article  CAS  PubMed  Google Scholar 

  8. Rajaji, U., Murugan, K., Chen, S. M., Govindasamy, M., Chen, T. W., & Lin, P. H. (2019). Graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposite as an emerging electrocatalyst for agro-hazardous (methyl paraoxon) detection in vegetables. Composites Part B: Engineering, 160, 268–276.

    Article  CAS  Google Scholar 

  9. Govindasamy, M., Mani, V., Chen, S. M., Chen, T. W., & Sundramoorthy, A. K. (2017). Methyl parathion detection in vegetables and fruits using silver@ graphene nanoribbons nanocomposite modified screen printed electrode. Scientific reports, 7(1), 1–11.

    Article  CAS  Google Scholar 

  10. Govindasamy, M., Umamaheswari, R., Chen, S. M., Mani, V., & Su, C. (2017). Graphene oxide nanoribbons film modified screen-printed carbon electrode for real-time detection of methyl parathion in food samples. Journal of The Electrochemical Society, 164(9), B403.

    Article  CAS  Google Scholar 

  11. Govindasamy, M., Rajaji, U., Chen, S. M., Kumaravel, S., Chen, T. W., Al-Hemaid, F. M., ..., & Elshikh, M. S. (2018). Detection of pesticide residues (Fenitrothion) in fruit samples based on niobium carbide@ molybdenum nanocomposite: An electrocatalytic approach. Analytica Chimica Acta1030, 52–60.

  12. Govindasamy, M., Chen, S. M., Mani, V., Akilarasan, M., Kogularasu, S., & Subramani, B. (2017). Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchimica Acta, 184(3), 725–733.

    Article  CAS  Google Scholar 

  13. Wei, M., & Wang, J. (2015). A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sensors and Actuators B: Chemical, 211, 290–296.

    Article  CAS  Google Scholar 

  14. Amine, A., Mohammadi, H., Bourais, I., & Palleschi, G. (2006). Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 21(8), 1405–1423.

    Article  CAS  PubMed  Google Scholar 

  15. Joshi, K. A., Tang, J., Haddon, R., Wang, J., Chen, W., & Mulchandani, A. (2005). A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(1), 54–58.

    Article  CAS  Google Scholar 

  16. Kesik, M., Kanik, F. E., Turan, J., Kolb, M., Timur, S., Bahadir, M., & Toppare, L. (2014). An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sensors and Actuators B: Chemical, 205, 39–49.

    Article  CAS  Google Scholar 

  17. Dutta, R. R., & Puzari, P. (2014). Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosensors and Bioelectronics, 52, 166–172.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, P., Sun, T., Rong, S., Zeng, D., Yu, H., Zhang, Z., ..., & Pan, H. (2019). A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry127, 163–170.

  19. Turan, J., Kesik, M., Soylemez, S., Goker, S., Coskun, S., Unalan, H. E., & Toppare, L. (2016). An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sensors and Actuators B: Chemical, 228, 278–286.

    Article  CAS  Google Scholar 

  20. Kaur, N., Thakur, H., & Prabhakar, N. (2016). Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate. Journal of Electroanalytical Chemistry, 775, 121–128.

    Article  CAS  Google Scholar 

  21. Fang, L., Liang, B., Yang, G., Hu, Y., Zhu, Q., & Ye, X. (2014). Study of glucose biosensor lifetime improvement in 37 C serum based on PANI enzyme immobilization and PLGA biodegradable membrane. Biosensors and Bioelectronics, 56, 91–96.

    Article  CAS  PubMed  Google Scholar 

  22. Lai, J., Yi, Y., Zhu, P., Shen, J., Wu, K., Zhang, L., & Liu, J. (2016). Polyaniline-based glucose biosensor: A review. Journal of Electroanalytical Chemistry, 782, 138–153.

    Article  CAS  Google Scholar 

  23. He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., & Zhang, Z. (2018). Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators B: Chemical, 258, 813–821.

    Article  CAS  Google Scholar 

  24. Al-Sagur, H., Komathi, S., Khan, M. A., Gurek, A. G., & Hassan, A. (2017). A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosensors and Bioelectronics, 92, 638–645.

    Article  CAS  PubMed  Google Scholar 

  25. Bai, L., Chen, Y., Bai, Y., Chen, Y., Zhou, J., & Huang, A. (2017). Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials, 133, 11–19.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y., Tan, R., Yang, J., Wang, K., Gao, R., Liu, D., ..., & Pan, F. (2017). 3D-hybrid material design with electron/lithium-ion dual-conductivity for high-performance Li-sulfur batteries. Journal of Power Sources340, 160–166.

  27. Kausaite-Minkstimiene, A., Mazeiko, V., Ramanaviciene, A., & Ramanavicius, A. (2010). Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor. Biosensors and Bioelectronics, 26(2), 790–797.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, R. E., Hong, S. G., Ha, S., & Kim, J. (2014). Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells. Enzyme and microbial technology, 66, 35–41.

    Article  CAS  PubMed  Google Scholar 

  29. Xu, Q., Gu, S. X., Jin, L., Zhou, Y. E., Yang, Z., Wang, W., & Hu, X. (2014). Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sensors and Actuators B: Chemical, 190, 562–569.

    Article  CAS  Google Scholar 

  30. Cai, Q., Xu, B., Ye, L., Di, Z., Zhang, J., Jin, Q., ..., & Chen, X. (2014). Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing. Talanta120, 462–469.

  31. Nagabooshanam, S., John, A. T., Wadhwa, S., Mathur, A., Krishnamurthy, S., & Bharadwaj, L. M. (2020). Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates. Food chemistry, 323, 126784.

    Article  CAS  PubMed  Google Scholar 

  32. Kaur, B., & Srivastava, R. (2015). A polyaniline–zeolite nanocomposite material based acetylcholinesterase biosensor for the sensitive detection of acetylcholine and organophosphates. New Journal of Chemistry, 39(9), 6899–6906.

    Article  CAS  Google Scholar 

  33. Thakur, D., Pandey, C. M., & Kumar, D. (2022). Highly sensitive enzymatic biosensor based on polyaniline-wrapped titanium dioxide nanohybrid for fish freshness detection. Applied Biochemistry and Biotechnology, 194, 3765–3778.

  34. Zhang, D., Jiang, C., Liu, J., & Cao, Y. (2017). Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sensors and Actuators B: Chemical, 247, 875–882.

    Article  CAS  Google Scholar 

  35. Jindal, K., Tomar, M., & Gupta, V. (2012). CuO thin film based uric acid biosensor with enhanced response characteristics. Biosensors and Bioelectronics, 38(1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, K., Dong, X., Zhao, C., Qian, X., & Xu, Y. (2015). Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochimica Acta, 152, 433–442.

    Article  CAS  Google Scholar 

  37. He, M., Xie, L., Zhao, X., Hu, X., Li, S., & Zhu, Z. G. (2019). Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. Journal of Alloys and Compounds, 788, 36–43.

    Article  CAS  Google Scholar 

  38. Bao, J., Huang, T., Wang, Z., Yang, H., Geng, X., Xu, G., ..., & Hou, C. (2019). 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sensors and Actuators B: Chemical279, 95–101.

  39. Loguercio, L. F., Thesing, A., Demingos, P., de Albuquerque, C. D., Rodrigues, R. S., Brolo, A. G., & Santos, J. F. (2021). Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sensors and Actuators B: Chemical, 339, 129875.

    Article  CAS  Google Scholar 

  40. Iqbal, S., Javed, M., Bahadur, A., Qamar, M. A., Ahmad, M., Shoaib, M., ..., & Li, H. (2020). Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly (acrylic acid) microgel shell for efficient removal of methylene blue under visible light. Journal of Materials Science: Materials in Electronics31(11), 8423–8435.

  41. Nagaraja, M., Prashanth, S., Pattar, J., Mahesh, H. M., & Rajanna, K. (2022). Polyaniline-CuO nanocomposite: Electrical, structural and sensor properties. Materials Today: Proceedings, 1(49), 1989–1992.

    Google Scholar 

  42. Ferreira, A. A., & Sanches, E. A. (2017). Multimorphologies of hydrochloride polyaniline synthesized by conventional and interfacial polymerization. Journal of Molecular Structure, 1143, 294–305.

    Article  CAS  Google Scholar 

  43. de Souza, V. S., da Frota, H. O., & Sanches, E. A. (2018). Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity. Journal of Molecular Structure, 1153, 20–27.

    Article  Google Scholar 

  44. Mehto, A., Mehto, V. R., Chauhan, J., Singh, I., & Pandey, R. (2017). Preparation and characterization of polyaniline/ZnO composite sensor. J. Nanomed. Res, 5, 00104.

    Google Scholar 

  45. Jalil, O., Pandey, C. M., & Kumar, D. (2020). Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchimica Acta, 187(5), 1–9.

    Article  Google Scholar 

  46. Verma, S., Pandey, C. M., & Kumar, D. (2022). A highly efficient rGO grafted MoS 2 nanocomposite for dye adsorption and electrochemical detection of hydroquinone in wastewater. New Journal of Chemistry, 46(44), 21190–21200.

  47. Jia, L., Zhou, Y., Wu, K., Feng, Q., Wang, C., & He, P. (2020). Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: Towards efficient fabrication and application in paraoxon detection. Bioelectrochemistry, 131, 107392.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, B. (2022). Electrochemical sensor based on Bimetallic phosphosulfide Zn–Ni–P–S Nanocomposite-reduced graphene oxide for determination of paraoxon ethyl in agriculture wastewater. International Journal of Electrochemical Science, 17(220672), 2.

    Google Scholar 

  49. Hua, Q. T., Ruecha, N., Hiruta, Y., & Citterio, D. (2019). Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis. Analytical Methods, 11(27), 3439–3445.

    Article  CAS  Google Scholar 

  50. Wu, Y., Jiao, L., Xu, W., Gu, W., Zhu, C., Du, D., & Lin, Y. (2019). Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection. Small, 15(17), 1900632.

    Article  Google Scholar 

  51. Sgobbi, L. F., & Machado, S. A. (2018). Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosensors and Bioelectronics, 100, 290–297.

    Article  CAS  PubMed  Google Scholar 

  52. Karthik, R., Kumar, J. V., Chen, S. M., Kokulnathan, T., Yang, H. Y., & Muthuraj, V. (2018). Design of novel ytterbium molybdate nanoflakes anchored carbon nanofibers: Challenging sustainable catalyst for the detection and degradation of assassination weapon (Paraoxon-Ethyl). ACS Sustainable Chemistry & Engineering, 6(7), 8615–8630.

    Article  CAS  Google Scholar 

  53. Mutharani, B., Ranganathan, P., Chen, S. M., & Karuppiah, C. (2019). Enzyme-free electrochemical detection of nanomolar levels of the organophosphorus pesticide paraoxon-ethyl by using a poly (N-isopropyl acrylamide)-chitosan microgel decorated with palladium nanoparticles. Microchimica Acta, 186(3), 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges to the University Grants Commission (UGC), Government of India, New Delhi, for their financial support (grant no. 351/CSIR-UGC NET DEC.2016).

Author information

Authors and Affiliations

Authors

Contributions

Saroj Paneru: conceptualization, methodology, validation, and writing original draft.

Devendra Kumar: supervision, writing—review and editing.

Corresponding author

Correspondence to Devendra Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneru, S., Kumar, D. A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection. Appl Biochem Biotechnol 195, 4485–4502 (2023). https://doi.org/10.1007/s12010-023-04350-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04350-y

Keywords

Navigation